ﻻ يوجد ملخص باللغة العربية
We studied iron-based superconductors of various families with critical temperatures covering almost all range $T_C = 9 - 53$ K. In natural arrays of contacts formed in these materials we observed intrinsic multiple Andreev reflections effect (IMARE). By using IMARE spectroscopy, we detected the two-gap superconductivity, determined the value of the large and the small superconducting gaps, and the corresponding BCS-ratios. The temperature dependencies of the large and the small gaps $Delta_{L,S}(T)$ are similar for various families of the Fe-based superconductors and could be well-fitted in the framework of the two-band model by Moskalenko and Suhl. We concluded on the extended s-wave symmetry of the $Delta_L$ order parameter (20-30 % anisotropy in k-space) and on the absence of nodes for $Delta_S$. The BCS-ratio $2Delta_L/k_BT_C approx 5.2$ is nearly constant within the whole range of $T_C$ (this means that coupling rate is unchanged), reflecting the 20 % reduction of the $T_C^{local}$ in relation to the eigen $T_C^L$, and the large gap roughly corresponds to the energy of magnetic resonance $2Delta_L approx E_{res}$. This result requires a special theoretical consideration. Our estimation of the relative coupling constants and eigen parameters of each condensate (in a hypothetical case of a zero interband interaction) $2Delta_L/k_BT_C^L = 4.2 - 4.8$ and $2Delta_S/k_BT_C^S = 3.5 - 4.5$ leads to indirect conclusion that namely a strong electron-phonon interaction in each condensate described in the framework of the Eliashberg theory plays the key role in the superconductivity of iron-based oxypnictides. With it, the two condensates interact weakly with each other. The observed scaling of $Delta_{L,S}$ with $T_C$, as was discussed above, is caused mainly by changing of the density of states $N_{L,S}$ in the bands, whereas Ln-O spacers act as charge reservoirs.
We have systematically studied the effects of in-plane uniaxial pressure $p$ on the superconducting transition temperature $T_c$ in many iron-based superconductors. The change of $T_c$ with $p$ is composed of linear and nonlinear components. The latt
We study the effects of anisotropic order parameters on the temperature dependence of London penetration depth anisotropy $gamma_lambda(T)$. After MgB$_2$, this dependence is commonly attributed to distinct gaps on multi-band Fermi surfaces in superc
Majorana zero mode is an exotic quasi-particle excitation with non-Abelian statistics in topological superconductor systems, and can serve as the cornerstone for topological quantum computation, a new type of fault-tolerant quantum computation archit
A model of charged hole-pair bosons, with long range Coulomb interactions and very weak interlayer coupling, is used to calculate the order parameter -Phi- of underdoped cuprates. Model parameters are extracted from experimental superfluid densities
The strong power law behavior of the specific heat jump $Delta C$ vs. $T_c$ ($Delta C/T_c sim T_c ^{alpha}, alphaapprox 2$), first observed by Budko, Ni, and Canfield (BNC)[1], has been confirmed with several families of the Fe-based superconducting