ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydrostatic and uniaxial pressure tuning of iron-based superconductors: Insights into superconductivity, magnetism, nematicity and collapsed tetragonal transitions

206   0   0.0 ( 0 )
 نشر من قبل Elena Gati
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Iron-based superconductors are well-known for their intriguing phase diagrams, which manifest a complex interplay of electronic, magnetic and structural degrees of freedom. Among the phase transitions observed are superconducting, magnetic, and several types of structural transitions, including a tetragonal-to-orthorhombic and a collapsed-tetragonal transition. In particular, the widely-observed tetragonal-to-orthorhombic transition is believed to be a result of an electronic order that is coupled to the crystalline lattice and is, thus, referred to as nematic transition. Nematicity is therefore a prominent feature of these materials, which signals the importance of the coupling of electronic and lattice properties. Correspondingly, these systems are particularly susceptible to tuning via pressure (hydrostatic, uniaxial, or some combination). We review efforts to probe the phase diagrams of pressure-tuned iron-based superconductors, with a strong focus on our own recent insights into the phase diagrams of several members of this material class under hydrostatic pressure. These studies on FeSe, Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$, Ca(Fe$_{1-x}$Co$_x$)$_2$As$_2$ and CaK(Fe$_{1-x}$Ni$_x$)$_4$As$_4$ were, to a significant extent, made possible by advances of what measurements can be adapted to the use under differing pressure environments. We point out the potential impact of these tools for the study of the wider class of strongly correlated electron systems.



قيم البحث

اقرأ أيضاً

A fundamental issue concerning iron-based superconductivity is the roles of electronic nematicity and magnetism in realising high transition temperature ($T_{rm c}$). To address this issue, FeSe is a key material, as it exhibits a unique pressure pha se diagram involving nonmagnetic nematic and pressure-induced antiferromagnetic ordered phases. However, as these two phases in FeSe overlap with each other, the effects of two orders on superconductivity remain perplexing. Here we construct the three-dimensional electronic phase diagram, temperature ($T$) against pressure ($P$) and isovalent S-substitution ($x$), for FeSe$_{1-x}$S$_{x}$, in which we achieve a complete separation of nematic and antiferromagnetic phases. In between, an extended nonmagnetic tetragonal phase emerges, where we find a striking enhancement of $T_{rm c}$. The completed phase diagram uncovers two superconducting domes with similarly high $T_{rm c}$ on both ends of the dome-shaped antiferromagnetic phase. The $T_{rm c}(P,x)$ variation implies that nematic fluctuations unless accompanying magnetism are not relevant for high-$T_{rm c}$ superconductivity in this system.
The origin of uniaxial and hydrostatic pressure effects on $T_c$ in the single-layered cuprate superconductors is theoretically explored. A two-orbital model, derived from first principles and analyzed with the fluctuation exchange approximation give s axial-dependent pressure coefficients, $partial T_c/partial P_a>0$, $partial T_c/partial P_c<0$, with a hydrostatic response $partial T_c/partial P>0$ for both La214 and Hg1201 cuprates, in qualitative agreement with experiments. Physically, this is shown to come from a unified picture in which higher $T_c$ is achieved with an orbital distillation, namely, the less the $d_{x^2-y^2}$ main band is hybridized with the $d_{z^2}$ and $4s$ orbitals higher the $T_c$. Some implications for obtaining higher $T_c$ materials are discussed.
Strain is a powerful experimental tool to explore new electronic states and understand unconventional superconductivity. Here, we investigate the effect of uniaxial strain on the nematic and superconducting phase of single crystal FeSe using magnetot ransport measurements. We find that the resistivity response to the strain is strongly temperature dependent and it correlates with the sign change in the Hall coefficient being driven by scattering, coupling with the lattice and multiband phenomena. Band structure calculations suggest that under strain the electron pockets develop a large in-plane anisotropy as compared with the hole pocket. Magnetotransport studies at low temperatures indicate that the mobility of the dominant carriers increases with tensile strain. Close to the critical temperature, all resistivity curves at constant strain cross in a single point, indicating a universal critical exponent linked to a strain-induced phase transition. Our results indicate that the superconducting state is enhanced under compressive strain and suppressed under tensile strain, in agreement with the trends observed in FeSe thin films and overdoped pnictides, whereas the nematic phase seems to be affected in the opposite way by the uniaxial strain. By comparing the enhanced superconductivity under strain of different systems, our results suggest that strain on its own cannot account for the enhanced high $T_c$ superconductivity of FeSe systems.
190 - A. A. Kordyuk 2012
Angle resolved photoemission spectroscopy (ARPES) reveals the features of the electronic structure of quasi-two-dimensional crystals, which are crucial for the formation of spin and charge ordering and determine the mechanisms of electron-electron in teraction, including the superconducting pairing. The newly discovered iron based superconductors (FeSC) promise interesting physics that stems, on one hand, from a coexistence of superconductivity and magnetism and, on the other hand, from complex multi-band electronic structure. In this review I want to give a simple introduction to the FeSC physics, and to advocate an opinion that all the complexity of FeSC properties is encapsulated in their electronic structure. For many compounds, this structure was determined in numerous ARPES experiments and agrees reasonably well with the results of band structure calculations. Nevertheless, the existing small differences may help to understand the mechanisms of the magnetic ordering and superconducting pairing in FeSC.
93 - J. Li , D. Zhao , Y. P. Wu 2016
In correlated electrons system, quantum melting of electronic crystalline phase often gives rise to many novel electronic phases. In cuprates superconductors, melting the Mott insulating phase with carrier doping leads to a quantum version of liquid crystal phase, the electronic nematicity, which breaks the rotational symmetry and exhibits a tight twist with high-temperature superconductivity. Recently, the electronic nematicity has also been observed in Fe-based superconductors. However, whether it shares a similar scenario with its cuprates counterpart is still elusive. Here, by measuring nuclear magnetic resonance in CsFe2As2, a prototypical Fe-based superconductor perceived to have evolved from a Mott insulating phase at 3d5 configuration, we report anisotropic quadruple broadening effect as a direct result of local rotational symmetry breaking. For the first time, clear connection between the Mott insulating phase and the electronic nematicity can be established and generalized to the Fe-based superconductors. This finding would promote a universal understanding on electronic nematicity and its relation with high-temperature superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا