ﻻ يوجد ملخص باللغة العربية
We report a de Haas-van Alphen (dHvA) effect study on the Dirac type-II semimetallic candidates emph{M}Al$_3$ (where, emph{M} = V, Nb and Ta). The angular-dependence of their Fermi surface (FS) cross-sectional areas reveals a remarkably good agreement with first-principle calculations. Therefore, dHvA supports the existence of tilted Dirac cones with Dirac type-II nodes located at 100, 230 and 250 meV above the Fermi level $varepsilon_F$ for VAl$_3$, NbAl$_3$ and TaAl$_3$ respectively, in agreement with the prediction of broken Lorentz invariance in these compounds. However, for all three compounds we find that the cyclotron orbits on their FSs, including an orbit nearly enclosing the Dirac type-II node, yield trivial Berry phases. We explain this $via$ an analysis of the Berry phase where the position of this orbit, relative to the Dirac node, is adjusted within the error implied by the small disagreement between our calculations and the experiments. We suggest that a very small amount of doping could displace $varepsilon_F$ to produce topologically non-trivial orbits encircling their Dirac node(s).
Here, we present a study on the Fermi-surface of the Dirac type-II semi-metallic candidate NiTe$_2$ via the temperature and angular dependence of the de Haas-van Alphen (dHvA) effect measured in single-crystals grown through Te flux. In contrast to i
We present a detailed quantum oscillatory study on the Dirac type-II semimetallic candidates PdTe$_{2}$ and PtTe$_{2}$ emph{via} the temperature and the angular dependence of the de Haas-van Alphen (dHvA) and Shubnikov-de Haas (SdH) effects. In high
Recently, a new group of layered transition-metal tetra-chalcogenides were proposed, via first principles calculations, to correspond to a new family of Weyl type-II semimetals with promising topological properties in the bulk as well as in the monol
Transition-metal dichalcogenides (TMDs) offer an ideal platform to experimentally realize Dirac fermions. However, typically these exotic quasiparticles are located far away from the Fermi level, limiting the contribution of Dirac-like carriers to th
We report on a magneto-transport and quantum oscillations study on high quality single crystals of the transition metal di-tellurides PtTe$_2$ and PdTe$_2$. The de Haas-van Alphen (dHvA) oscillations in the magnetization measurements on PtTe$_2$ reve