ترغب بنشر مسار تعليمي؟ اضغط هنا

Bulk Fermi surface of the type-II Weyl semimetal candidate NbIrTe$_{4}$

69   0   0.0 ( 0 )
 نشر من قبل Rico Sch\\\"onemann
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, a new group of layered transition-metal tetra-chalcogenides were proposed, via first principles calculations, to correspond to a new family of Weyl type-II semimetals with promising topological properties in the bulk as well as in the monolayer limit. In this article, we present measurements of the Shubnikov-de Haas (SdH) and de Haas-van Alphen effects under high magnetic fields for the type-II Weyl semimetallic candidate NbIrTe$_{4}$. We find that the angular dependence of the observed Fermi surface extremal cross-sectional areas agree well with our DFT calculations supporting the existence of Weyl type-II points in this material. Although we observe a large and non-saturating magnetoresistivity in NbIrTe$_{4}$ under fields all the way up to 35 T, Hall-effect measurements indicate that NbIrTe$_{4}$ is not a compensated semimetal. The transverse magnetoresistivity displays a four-fold angular dependence akin to the so-called butterfly magnetoresistivity observed in nodal line semimetals. However, we conclude that its field and this unconventional angular-dependence are governed by the topography of the Fermi-surface and the resulting anisotropy in effective masses and in carrier mobilities.


قيم البحث

اقرأ أيضاً

We perform ultrahigh resolution angle-resolved photoemission experiments at a temperature T=0.8 K on the type-II Weyl semimetal candidate WTe$_{2}$. We find a surface Fermi arc connecting the bulk electron and hole pockets on the (001) surface. Our r esults show that the surface Fermi arc connectivity to the bulk bands is strongly mediated by distinct surface resonances dispersing near the border of the surface-projected bulk band gap. By comparing the experimental results to first-principles calculations we argue that the coupling to these surface resonances, which are topologically trivial, is compatible with the classification of WTe$_{2}$ as a type-II Weyl semimetal hosting topological Fermi arcs. We further support our conclusion by a systematic characterization of the bulk and surface character of the different bands and discuss the similarity of our findings to the case of topological insulators.
The electronic structure of WTe$_2$ and orthorhombic $gamma-$MoTe$_2$, are claimed to contain pairs of Weyl type-II points. A series of ARPES experiments claim a broad agreement with these predictions. We synthesized single-crystals of MoTe$_2$ throu gh a Te flux method to validate these predictions through measurements of its bulk Fermi surface (FS) emph{via} quantum oscillatory phenomena. We find that the superconducting transition temperature of $gamma-$MoTe$_2$ depends on disorder as quantified by the ratio between the room- and low-temperature resistivities, suggesting the possibility of an unconventional superconducting pairing symmetry. Similarly to WTe$_2$, the magnetoresistivity of $gamma-$MoTe$_2$ does not saturate at high magnetic fields and can easily surpass $10^{6}$ %. Remarkably, the analysis of the de Haas-van Alphen (dHvA) signal superimposed onto the magnetic torque, indicates that the geometry of its FS is markedly distinct from the calculated one. The dHvA signal also reveals that the FS is affected by the Zeeman-effect precluding the extraction of the Berry-phase. A direct comparison between the previous ARPES studies and density-functional-theory (DFT) calculations reveals a disagreement in the position of the valence bands relative to the Fermi level $varepsilon_F$. Here, we show that a shift of the DFT valence bands relative to $varepsilon_F$, in order to match the ARPES observations, and of the DFT electron bands to explain some of the observed dHvA frequencies, leads to a good agreement between the calculations and the angular dependence of the FS cross-sectional areas observed experimentally. However, this relative displacement between electron- and hole-bands eliminates their crossings and, therefore, the Weyl type-II points predicted for $gamma-$MoTe$_2$.
131 - D. Chen , L. X. Zhao , J. B. He 2016
We have investigated the magnetoresistance (MR) and Hall resistivity properties of the single crystals of tantalum sulfide, Ta3S2, which was recently predicted to be a new type II Weyl semimetal. Large MR (up to ~8000% at 2 K and 16 T), field-induced metal-insulator-like transition and nonlinear Hall resistivity are observed at low temperatures. The large MR shows a strong dependence on the field orientation, leading to a giant anisotropic magnetoresistance (AMR) effect. For the field applied along the b-axis (B//b), MR exhibits quadratic field dependence at low fields and tends towards saturation at high fields; while for B//a, MR presents quadratic field dependence at low fields and becomes linear at high fields without any trend towards saturation. The analysis of the Hall resistivity data indicates the coexistence of a large number of electrons with low mobility and a small number of holes with high mobility. Shubnikov-de Haas (SdH) oscillation analysis reveals three fundamental frequencies originated from the three-dimensional (3D) Fermi surface (FS) pockets. We find that the semi-classical multiband model is sufficient to account for the experimentally observed MR in Ta3S2.
119 - A. Tamai , Q. S. Wu , I. Cucchi 2016
We report a combined experimental and theoretical study of the candidate type-II Weyl semimetal MoTe2. Using laser-based angle-resolved photoemission we resolve multiple distinct Fermi arcs on the inequivalent top and bottom (001) surfaces. All surfa ce states observed experimentally are reproduced by an electronic structure calculation for the experimental crystal structure that predicts a topological Weyl semimetal state with 8 type-II Weyl points. We further use systematic electronic structure calculations simulating different Weyl point arrangements to discuss the robustness of the identified Weyl semimetal state and the topological character of Fermi arcs in MoTe2.
96 - F. Y. Bruno , A. Tamai , Q. S. Wu 2016
We report angle-resolved photoemission experiments resolving the distinct electronic structure of the inequivalent top and bottom (001) surfaces of WTe2. On both surfaces, we identify a surface state that forms a large Fermi-arc emerging out of the b ulk electron pocket. Using surface electronic structure calculations, we show that these Fermi arcs are topologically trivial and that their existence is independent of the presence of type-II Weyl points in the bulk band structure. This implies that the observation of surface Fermi arcs alone does not allow the identification of WTe2 as a topological Weyl semimetal. We further use the identification of the two different surfaces to clarify the number of Fermi surface sheets in WTe2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا