ﻻ يوجد ملخص باللغة العربية
Recently, a new group of layered transition-metal tetra-chalcogenides were proposed, via first principles calculations, to correspond to a new family of Weyl type-II semimetals with promising topological properties in the bulk as well as in the monolayer limit. In this article, we present measurements of the Shubnikov-de Haas (SdH) and de Haas-van Alphen effects under high magnetic fields for the type-II Weyl semimetallic candidate NbIrTe$_{4}$. We find that the angular dependence of the observed Fermi surface extremal cross-sectional areas agree well with our DFT calculations supporting the existence of Weyl type-II points in this material. Although we observe a large and non-saturating magnetoresistivity in NbIrTe$_{4}$ under fields all the way up to 35 T, Hall-effect measurements indicate that NbIrTe$_{4}$ is not a compensated semimetal. The transverse magnetoresistivity displays a four-fold angular dependence akin to the so-called butterfly magnetoresistivity observed in nodal line semimetals. However, we conclude that its field and this unconventional angular-dependence are governed by the topography of the Fermi-surface and the resulting anisotropy in effective masses and in carrier mobilities.
We perform ultrahigh resolution angle-resolved photoemission experiments at a temperature T=0.8 K on the type-II Weyl semimetal candidate WTe$_{2}$. We find a surface Fermi arc connecting the bulk electron and hole pockets on the (001) surface. Our r
The electronic structure of WTe$_2$ and orthorhombic $gamma-$MoTe$_2$, are claimed to contain pairs of Weyl type-II points. A series of ARPES experiments claim a broad agreement with these predictions. We synthesized single-crystals of MoTe$_2$ throu
We have investigated the magnetoresistance (MR) and Hall resistivity properties of the single crystals of tantalum sulfide, Ta3S2, which was recently predicted to be a new type II Weyl semimetal. Large MR (up to ~8000% at 2 K and 16 T), field-induced
We report a combined experimental and theoretical study of the candidate type-II Weyl semimetal MoTe2. Using laser-based angle-resolved photoemission we resolve multiple distinct Fermi arcs on the inequivalent top and bottom (001) surfaces. All surfa
We report angle-resolved photoemission experiments resolving the distinct electronic structure of the inequivalent top and bottom (001) surfaces of WTe2. On both surfaces, we identify a surface state that forms a large Fermi-arc emerging out of the b