ترغب بنشر مسار تعليمي؟ اضغط هنا

The stationary distribution of a sample from the Wright-Fisher diffusion model with general small mutation rates

144   0   0.0 ( 0 )
 نشر من قبل Robert Griffiths Professor
 تاريخ النشر 2018
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The stationary distribution of a sample taken from a Wright-Fisher diffusion with general small mutation rates is found using a coalescent approach. The approximation is equivalent to having at most one mutation in the coalescent tree to the first order in the rates. The sample probabilities characterize an approximation for the stationary distribution from the Wright-Fisher diffusion. The approach is different from Burden and Tang (2016,2017) who use a probability flux argument to obtain the same results from a forward diffusion generator equation. The solution has interest because the solution is not known when rates are not small. An analogous solution is found for the configuration of alleles in a general exchangeable binary coalescent tree. In particular an explicit solution is found for a pure birth process tree when individuals reproduce at rate lambda.

قيم البحث

اقرأ أيضاً

The transition distribution of a sample taken from a Wright-Fisher diffusion with general small mutation rates is found using a coalescent approach. The approximation is equivalent to having at most one mutation in the coalescent tree of the sample u p to the most recent common ancestor with additional mutations occurring on the lineage from the most recent common ancestor to the time origin if complete coalescence occurs before the origin. The sampling distribution leads to an approximation for the transition density in the diffusion with small mutation rates. This new solution has interest because the transition density in a Wright-Fisher diffusion with general mutation rates is not known.
The stationary distribution of the diffusion limit of the 2-island, 2-allele Wright-Fisher with small but otherwise arbitrary mutation and migration rates is investigated. Following a method developed by Burden and Tang (2016, 2017) for approximating the forward Kolmogorov equation, the stationary distribution is obtained to leading order as a set of line densities on the edges of the sample space, corresponding to states for which one island is bi-allelic and the other island is non-segregating, and a set of point masses at the corners of the sample space, corresponding to states for which both islands are simultaneously non-segregating. Analytic results for the corner probabilities and line densities are verified independently using the backward generator and for the corner probabilities using the coalescent.
We investigate the properties of a Wright-Fisher diffusion process started from frequency x at time 0 and conditioned to be at frequency y at time T. Such a process is called a bridge. Bridges arise naturally in the analysis of selection acting on st anding variation and in the inference of selection from allele frequency time series. We establish a number of results about the distribution of neutral Wright-Fisher bridges and develop a novel rejection sampling scheme for bridges under selection that we use to study their behavior.
145 - Joshua G. Schraiber 2013
The Wright-Fisher process with selection is an important tool in population genetics theory. Traditional analysis of this process relies on the diffusion approximation. The diffusion approximation is usually studied in a partial differential equation s framework. In this paper, I introduce a path integral formalism to study the Wright-Fisher process with selection and use that formalism to obtain a simple perturbation series to approximate the transition density. The perturbation series can be understood in terms of Feynman diagrams, which have a simple probabilistic interpretation in terms of selective events. The perturbation series proves to be an accurate approximation of the transition density for weak selection and is shown to be arbitrarily accurate for any selection coefficient.
New models for evolutionary processes of mutation accumulation allow hypotheses about the age-specificity of mutational effects to be translated into predictions of heterogeneous population hazard functions. We apply these models to questions in the biodemography of longevity, including proposed explanations of Gompertz hazards and mortality plateaus, and use them to explore the possibility of melding evolutionary and functional models of aging.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا