ﻻ يوجد ملخص باللغة العربية
The transition distribution of a sample taken from a Wright-Fisher diffusion with general small mutation rates is found using a coalescent approach. The approximation is equivalent to having at most one mutation in the coalescent tree of the sample up to the most recent common ancestor with additional mutations occurring on the lineage from the most recent common ancestor to the time origin if complete coalescence occurs before the origin. The sampling distribution leads to an approximation for the transition density in the diffusion with small mutation rates. This new solution has interest because the transition density in a Wright-Fisher diffusion with general mutation rates is not known.
The stationary distribution of a sample taken from a Wright-Fisher diffusion with general small mutation rates is found using a coalescent approach. The approximation is equivalent to having at most one mutation in the coalescent tree to the first or
The stationary distribution of the diffusion limit of the 2-island, 2-allele Wright-Fisher with small but otherwise arbitrary mutation and migration rates is investigated. Following a method developed by Burden and Tang (2016, 2017) for approximating
We investigate the properties of a Wright-Fisher diffusion process started from frequency x at time 0 and conditioned to be at frequency y at time T. Such a process is called a bridge. Bridges arise naturally in the analysis of selection acting on st
Duality plays an important role in population genetics. It can relate results from forwards-in-time models of allele frequency evolution with those of backwards-in-time genealogical models; a well known example is the duality between the Wright-Fishe
The Wright-Fisher process with selection is an important tool in population genetics theory. Traditional analysis of this process relies on the diffusion approximation. The diffusion approximation is usually studied in a partial differential equation