ﻻ يوجد ملخص باللغة العربية
New models for evolutionary processes of mutation accumulation allow hypotheses about the age-specificity of mutational effects to be translated into predictions of heterogeneous population hazard functions. We apply these models to questions in the biodemography of longevity, including proposed explanations of Gompertz hazards and mortality plateaus, and use them to explore the possibility of melding evolutionary and functional models of aging.
The transition distribution of a sample taken from a Wright-Fisher diffusion with general small mutation rates is found using a coalescent approach. The approximation is equivalent to having at most one mutation in the coalescent tree of the sample u
The stationary distribution of a sample taken from a Wright-Fisher diffusion with general small mutation rates is found using a coalescent approach. The approximation is equivalent to having at most one mutation in the coalescent tree to the first or
We study evolutionary game dynamics in a well-mixed populations of finite size, N. A well-mixed population means that any two individuals are equally likely to interact. In particular we consider the average abundances of two strategies, A and B, und
The stationary distribution of the diffusion limit of the 2-island, 2-allele Wright-Fisher with small but otherwise arbitrary mutation and migration rates is investigated. Following a method developed by Burden and Tang (2016, 2017) for approximating
We consider a population evolving due to mutation, selection and recombination, where selection includes single-locus terms (additive fitness) and two-loci terms (pairwise epistatic fitness). We further consider the problem of inferring fitness in th