ﻻ يوجد ملخص باللغة العربية
We report very large bandgap enhancement in SrTiO3 (STO) films (fabricated by pulsed laser deposition below 800 {deg}C), which can be up to 20% greater than the bulk value, depending on the deposition temperature. The origin is comprehensively investigated and finally attributed to Sr/Ti antisite point defects, supported by density functional theory calculations. More importantly, the bandgap enhancement can be utilized to tailor the electronic and magnetic phases of the two-dimensional electron gas (2DEG) in STO-based interface systems. For example, the oxygen-vacancy-induced 2DEG (2DEG-V) at the interface between amorphous LaAlO3 and STO films is more localized and the ferromagnetic order in the STO-film-based 2DEG-V can be clearly seen from low-temperature magnetotransport measurements. This opens an attractive path to tailor electronic, magnetic and optical properties of STO-based oxide interface systems under intensive focus in the oxide electronics community. Meanwhile, our study provides key insight into the origin of the fundamental issue that STO films are difficult to be doped into the fully metallic state by oxygen vacancies.
The relative importance of atomic defects and electron transfer in explaining conductivity at the crystalline LaAlO3/SrTiO3 interface has been a topic of debate. Metallic interfaces with similar electronic properties produced by amorphous oxide overl
Conventional two-dimensional electron gases are realized by engineering the interfaces between semiconducting compounds. In 2004, Ohtomo and Hwang discovered that an electron gas can be also realized at the interface between large gap insulators made
We have performed high field magnetotransport measurements to investigate the interface electron gas in LaAlO3/SrTiO3 heterostructures. Shubnikov-de Haas oscillations reveal several 2D conduction subbands with carrier effective masses between 1 and 3
Similar to silicon that is the basis of conventional electronics, strontium titanate (SrTiO3) is the bedrock of the emerging field of oxide electronics. SrTiO3 is the preferred template to create exotic two-dimensional (2D) phases of electron matter
Using light to manipulate materials into desired states is one of the goals in condensed matter physics, since light control can provide ultrafast and environmentally-friendly photonics devices. However, it is generally difficult to realise a photo-i