ﻻ يوجد ملخص باللغة العربية
We deposit thin titanium-nitride (TiN) and TiN/Ti/TiN multilayer films on sapphire substrates and measure the reflectance and transmittance in the wavelength range from 400 nm to 2000 nm using a spectrophotometer. The optical constants (complex refractive indices), including the refractive index n and the extinction coefficient k, have been derived. With the extracted refractive indices, we propose an optical stack structure using low-loss amorphous Si (a-Si) anti-reflective coating and a backside aluminum (Al) reflecting mirror, which can in theory achieve 100% photon absorption at 1550 nm. The proposed optical design shows great promise in enhancing the optical efficiency of TiN-based microwave kinetic inductance photon-number-resolving detectors.
We have grown superconducting TiN films by atomic layer deposition with thicknesses ranging from 6 to 89 nm. This deposition method allows us to tune the resistivity and critical temperature by controlling the film thickness. The microwave properties
Using density functional theory (DFT) based first principles calculations, we show that the preferred interfacial plane orientation relationship is determined by the strength of bonding at the interface. The thermodynamic stability, and the ideal ten
We demonstrate optical coupling between a single tin-vacancy (SnV) center in diamond and a free-standing photonic crystal nanobeam cavity. The cavities are fabricated using quasi-isotropic etching and feature experimentally measured quality factors a
Group-IV color centers in diamond have attracted significant attention as solid-state spin qubits because of their excellent optical and spin properties. Among these color centers, the tin-vacancy (SnV$^{,textrm{-}}$) center is of particular interest
Nb3Sn has the potential to achieve superior performance in terms of quality factor, accelerating gradient and operating temperature (4.2 K vs 2 K) resulting in significant reduction in both capital and operating costs compared to traditional niobium