ﻻ يوجد ملخص باللغة العربية
Using density functional theory (DFT) based first principles calculations, we show that the preferred interfacial plane orientation relationship is determined by the strength of bonding at the interface. The thermodynamic stability, and the ideal tensile and shear strengths of Cu/TiN and Al/TiN interfaces are calculated. While there is a strong orientation relation (OR) preference for Al/TiN interface, there is no OR preference for Cu/TiN interface. Both the ideal tensile and shear strengths of Cu/TiN interfaces are lower than those of bulk Cu and TiN, suggesting such interfaces are weaker than their bulk components. By comparison, the ideal strengths of Al/TiN interface are comparable to the constituents in the bulk form. Such contrasting interfaces can be a test-bed for studying the role of interfaces in determining the mechanical behavior of the nanolayered structures.
Promoting performance of generation and transport of hot carriers in metal/semiconductor junctions is critical for harvesting energy of hot carriers. However, the low injection efficiency of hot carriers generated in the commonly used noble metals su
The structural, electronic, and adhesive properties of Cu/SiO$_2$ interfaces are investigated using first-principles density-functional theory within the local density approximation. Interfaces between fcc Cu and $alpha$-cristobalite(001) surfaces
Understanding the retention and recycling of hydrogen isotopes in liquid metal plasma-facing materials such as liquid Li, Sn, and Li-Sn are of fundamental importance in designing magnetically confined fusion reactors. We perform first-principles mole
The paper reports on a theoretical description of work function of TiN, which is one of the most used materials for the realization of electrodes and gates in CMOS devices. Indeed, although the work function is a fundamental quantity in quantum mecha
Based on the exact muffin-tin orbitals (EMTOs), we developed a first-principles method to calculate the current operators and investigated the anomalous Hall effect in bcc Fe as an example, with which we successfully separated the skew scattering con