ﻻ يوجد ملخص باللغة العربية
The critical behavior of dc magnetization in the uranium ferromagnet URhAl with the hexagonal ZrNiAl-type crystal structure has been studied around the ferromagnetic transition temperature T_C. The critical exponent beta for the temperature dependence of the spontaneous magnetization below T_C, gamma for the magnetic susceptibility, and delta for the magnetic isotherm at T_C have been obtained with a modified Arrott plot, a Kouvel-Fisher plot, the critical isotherm analysis and the scaling analysis. We have determined the critical exponents as beta = 0.287 +- 0.005, gamma = 1.47 +- 0.02, and delta = 6.08 +- 0.04 by the scaling analysis and the critical isotherm analysis. These critical exponents satisfy the Widom scaling law delta=1+gamma/beta. URhAl has strong uniaxial magnetic anisotropy, similar to its isostructural UCoAl that has been regarded as a three-dimensional (3D) Ising system in previous studies. However, the universality class of the critical phenomenon in URhAl does not belong to the 3D Ising model (beta = 0.325, gamma = 1.241, and delta = 4.82) with short-range exchange interactions between magnetic moments. The determined exponents can be explained with the results of the renormalization group approach for a two-dimensional (2D) Ising system coupled with long-range interactions decaying as J(r)~r^-(d+sigma) with sigma = 1.44. We suggest that the strong hybridization between the uranium 5f and rhodium 4d electrons in the U-Rh_I layer in the hexagonal crystal structure is a source of the low dimensional magnetic property. The present result is contrary to current understandings of the physical properties in a series of isostructural UTX uranium ferromagnets (T: transition metals, X: p-block elements) based on the 3D Ising model.
We present results of a Monte Carlo study for the ferromagnetic Ising model with long range interactions in two dimensions. This model has been simulated for a large range of interaction parameter $sigma$ and for large sizes. We observe that the resu
We study the critical breakdown of two-dimensional quantum magnets in the presence of algebraically decaying long-range interactions by investigating the transverse-field Ising model on the square and triangular lattice. This is achieved technically
Statistical mechanical models with local interactions in $d>1$ dimension can be regarded as $d=1$ dimensional models with regular long range interactions. In this paper we study the critical properties of Ising models having $V$ sites, each having $z
The standard two-dimensional Ising spin glass does not exhibit an ordered phase at finite temperature. Here, we investigate whether long-range correlated bonds change this behavior. The bonds are drawn from a Gaussian distribution with a two-point co
We study the phase diagram and critical properties of quantum Ising chains with long-range ferromagnetic interactions decaying in a power-law fashion with exponent $alpha$, in regimes of direct interest for current trapped ion experiments. Using larg