ﻻ يوجد ملخص باللغة العربية
We discuss a one-dimensional fermionic model with a generalized $mathbb{Z}_{N}$ even multiplet pairing extending Kitaev $mathbb{Z}_{2}$ chain. The system shares many features with models believed to host localized edge parafermions, the most prominent being a similar bosonized Hamiltonian and a $mathbb{Z}_{N}$ symmetry enforcing an $N$-fold degenerate ground state robust to certain disorder. Interestingly, we show that the system supports a pair of parafermions but they are non-local instead of being boundary operators. As a result, the degeneracy of the ground state is only partly topological and coexists with spontaneous symmetry breaking by a (two-particle) pairing field. Each symmetry-breaking sector is shown to possess a pair of Majorana edge modes encoding the topological twofold degeneracy. Surrounded by two band insulators, the model exhibits for $N=4$ the dual of an $8 pi$ fractional Josephson effect highlighting the presence of parafermions.
Parafermions are emergent excitations which generalize Majorana fermions and are potentially relevant to topological quantum computation. Using the concept of Fock parafermions, we present a mapping between lattice $mathbb{Z}_4$ parafermions and latt
We study interaction-induced Mott insulators, and their topological properties in a 1D non-Hermitian strongly-correlated spinful fermionic superlattice system with either nonreciprocal hopping or complex-valued interaction. For the nonreciprocal hopp
We study one-dimensional, interacting, gapped fermionic systems described by variants of the Peierls-Hubbard model and characterize their phases via a topological invariant constructed out of their Greens functions. We demonstrate that the existence
We address some open questions regarding the phase diagram of the one-dimensional Hubbard model with asymmetric hopping coefficients and balanced species. In the attractive regime we present a numerical study of the passage from on-site pairing domin
We study the topological properties of Bose-Mott insulators in one-dimensional non-Hermitian superlattices, which may serve as effective Hamiltonians for cold atomic optical systems with either two-body loss or one-body loss. We find that in the stro