ترغب بنشر مسار تعليمي؟ اضغط هنا

Confinement and Superfluidity in one-dimensional Degenerate Fermionic Cold Atoms

125   0   0.0 ( 0 )
 نشر من قبل Lecheminant
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The physical properties of arbitrary half-integer spins $F = N - 1/2$ fermionic cold atoms trapped in a one-dimensional optical lattice are investigated by means of a low-energy approach. Two different superfluid phases are found for $F ge 3/2$ depending on whether a discrete symmetry is spontaneously broken or not: an unconfined BCS pairing phase and a confined molecular superfluid instability made of $2N$ fermions. We propose an experimental distinction between these phases for a gas trapped in an annular geometry. The confined-unconfined transition is shown to belong to the $Z_N$ generalized Ising universality class. We discuss on the possible Mott phases at $1/2N$ filling.

قيم البحث

اقرأ أيضاً

62 - S. Capponi , G. Roux , P. Azaria 2006
The phase diagram of spin-3/2 fermionic cold atoms trapped in a one-dimensional optical lattice is investigated at quarter filling (one atom per site) by means of large-scale numerical simulations. In full agreement with a recent low-energy approach, we find two phases with confined and deconfined Cooper pairs separated by an Ising quantum phase transition. The leading instability in the confined phase is an atomic-density wave with subdominant quartet superfluid instability made of four fermions. Finally, we reveal the existence of a bond-ordered Mott insulating phase in some part of the repulsive regime.
A Haldane conjecture is revealed for spin-singlet charge modes in 2N-component fermionic cold atoms loaded into a one-dimensional optical lattice. By means of a low-energy approach and DMRG calculations, we show the emergence of gapless and gapped ph ases depending on the parity of $N$ for attractive interactions at half-filling. The analogue of the Haldane phase of the spin-1 Heisenberg chain is stabilized for N=2 with non-local string charge correlation, and pseudo-spin 1/2 edge states. At the heart of this even-odd behavior is the existence of a spin-singlet pseudo-spin $N/2$ operator which governs the low-energy properties of the model for attractive interactions and gives rise to the Haldane physics.
We study a simple model of N-component fermions with contact interactions which describes fermionic atoms with N=2F+1 hyperfine states loaded into a one-dimensional optical lattice. We show by means of analytical and numerical approaches that, for at tractive interaction, a quasi-long-range molecular superfluid phase emerges at low density. In such a phase, the pairing instability is strongly suppressed and the leading instability is formed from bound-states made of N fermions. At small density, the molecular superfluid phase is generic and exists for a wide range of attractive contact interactions without an SU(N) symmetry between the hyperfine states.
Spin-polarized attractive Fermi gases in one-dimensional (1D) optical lattices are expected to be remarkably good candidates for the observation of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase. We model these systems with an attractive Hubbard m odel with population imbalance. By means of the density-matrix renormalization-group method we compute the pairing correlations as well as the static spin and charge structure factors in the whole range from weak to strong coupling. We demonstrate that pairing correlations exhibit quasi-long range order and oscillations at the wave number expected from FFLO theory. However, we also show by numerically computing the mixed spin-charge static structure factor that charge and spin degrees of freedom appear to be coupled already for small imbalance. We discuss the consequences of this coupling for the observation of the FFLO phase, as well as for the stabilization of the quasi-long range order into long-range order by coupling many identical 1D systems, as in quasi-1D optical lattices.
122 - P. Lecheminant , P. Azaria , 2008
The physical properties of arbitrary half-integer spins F = N - 1/2 fermionic cold atoms loaded into a one-dimensional optical lattice are investigated by means of a conformal field theory approach. We show that for attractive interactions two differ ent superfluid phases emerge for F ge 3/2: A BCS pairing phase, and a molecular superfluid phase which is formed from bound-states made of 2N fermions. In the low-energy approach, the competition between these instabilities and charge-density waves is described in terms of Z_N parafermionic degrees of freedom. The quantum phase transition for F=3/2,5/2 is universal and shown to belong to the Ising and three-state Potts universality classes respectively. For a filling of one atom per site, a Mott transition occurs and the nature of the possible Mott-insulating phases are determined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا