ترغب بنشر مسار تعليمي؟ اضغط هنا

Identify Susceptible Locations in Medical Records via Adversarial Attacks on Deep Predictive Models

169   0   0.0 ( 0 )
 نشر من قبل Mengying Sun
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The surging availability of electronic medical records (EHR) leads to increased research interests in medical predictive modeling. Recently many deep learning based predicted models are also developed for EHR data and demonstrated impressive performance. However, a series of recent studies showed that these deep models are not safe: they suffer from certain vulnerabilities. In short, a well-trained deep network can be extremely sensitive to inputs with negligible changes. These inputs are referred to as adversarial examples. In the context of medical informatics, such attacks could alter the result of a high performance deep predictive model by slightly perturbing a patients medical records. Such instability not only reflects the weakness of deep architectures, more importantly, it offers guide on detecting susceptible parts on the inputs. In this paper, we propose an efficient and effective framework that learns a time-preferential minimum attack targeting the LSTM model with EHR inputs, and we leverage this attack strategy to screen medical records of patients and identify susceptible events and measurements. The efficient screening procedure can assist decision makers to pay extra attentions to the locations that can cause severe consequence if not measured correctly. We conduct extensive empirical studies on a real-world urgent care cohort and demonstrate the effectiveness of the proposed screening approach.

قيم البحث

اقرأ أيضاً

60 - You Jin Kim 2017
Predicting highrisk vascular diseases is a significant issue in the medical domain. Most predicting methods predict the prognosis of patients from pathological and radiological measurements, which are expensive and require much time to be analyzed. H ere we propose deep attention models that predict the onset of the high risky vascular disease from symbolic medical histories sequence of hypertension patients such as ICD-10 and pharmacy codes only, Medical History-based Prediction using Attention Network (MeHPAN). We demonstrate two types of attention models based on 1) bidirectional gated recurrent unit (R-MeHPAN) and 2) 1D convolutional multilayer model (C-MeHPAN). Two MeHPAN models are evaluated on approximately 50,000 hypertension patients with respect to precision, recall, f1-measure and area under the curve (AUC). Experimental results show that our MeHPAN methods outperform standard classification models. Comparing two MeHPANs, R-MeHPAN provides more better discriminative capability with respect to all metrics while C-MeHPAN presents much shorter training time with competitive accuracy.
105 - Xuli Sun , Shiliang Sun 2020
Recent work has highlighted the vulnerability of many deep machine learning models to adversarial examples. It attracts increasing attention to adversarial attacks, which can be used to evaluate the security and robustness of models before they are d eployed. However, to our best knowledge, there is no specific research on the adversarial attacks for multi-view deep models. This paper proposes two multi-view attack strategies, two-stage attack (TSA) and end-to-end attack (ETEA). With the mild assumption that the single-view model on which the target multi-view model is based is known, we first propose the TSA strategy. The main idea of TSA is to attack the multi-view model with adversarial examples generated by attacking the associated single-view model, by which state-of-the-art single-view attack methods are directly extended to the multi-view scenario. Then we further propose the ETEA strategy when the multi-view model is provided publicly. The ETEA is applied to accomplish direct attacks on the target multi-view model, where we develop three effective multi-view attack methods. Finally, based on the fact that adversarial examples generalize well among different models, this paper takes the adversarial attack on the multi-view convolutional neural network as an example to validate that the effectiveness of the proposed multi-view attacks. Extensive experimental results demonstrate that our multi-view attack strategies are capable of attacking the multi-view deep models, and we additionally find that multi-view models are more robust than single-view models.
Deep Reinforcement Learning (DRL) has become an appealing solution to algorithmic trading such as high frequency trading of stocks and cyptocurrencies. However, DRL have been shown to be susceptible to adversarial attacks. It follows that algorithmic trading DRL agents may also be compromised by such adversarial techniques, leading to policy manipulation. In this paper, we develop a threat model for deep trading policies, and propose two attack techniques for manipulating the performance of such policies at test-time. Furthermore, we demonstrate the effectiveness of the proposed attacks against benchmark and real-world DQN trading agents.
151 - Xingjun Ma , Yuhao Niu , Lin Gu 2019
Deep neural networks (DNNs) have become popular for medical image analysis tasks like cancer diagnosis and lesion detection. However, a recent study demonstrates that medical deep learning systems can be compromised by carefully-engineered adversaria l examples/attacks with small imperceptible perturbations. This raises safety concerns about the deployment of these systems in clinical settings. In this paper, we provide a deeper understanding of adversarial examples in the context of medical images. We find that medical DNN models can be more vulnerable to adversarial attacks compared to models for natural images, according to two different viewpoints. Surprisingly, we also find that medical adversarial attacks can be easily detected, i.e., simple detectors can achieve over 98% detection AUC against state-of-the-art attacks, due to fundamental feature differences compared to normal examples. We believe these findings may be a useful basis to approach the design of more explainable and secure medical deep learning systems.
Deep neural networks (DNNs) are known for their vulnerability to adversarial examples. These are examples that have undergone small, carefully crafted perturbations, and which can easily fool a DNN into making misclassifications at test time. Thus fa r, the field of adversarial research has mainly focused on image models, under either a white-box setting, where an adversary has full access to model parameters, or a black-box setting where an adversary can only query the target model for probabilities or labels. Whilst several white-box attacks have been proposed for video models, black-box video attacks are still unexplored. To close this gap, we propose the first black-box video attack framework, called V-BAD. V-BAD utilizes tentative perturbations transferred from image models, and partition-based rectifications found by the NES on partitions (patches) of tentative perturbations, to obtain good adversarial gradient estimates with fewer queries to the target model. V-BAD is equivalent to estimating the projection of an adversarial gradient on a selected subspace. Using three benchmark video datasets, we demonstrate that V-BAD can craft both untargeted and targeted attacks to fool two state-of-the-art deep video recognition models. For the targeted attack, it achieves $>$93% success rate using only an average of $3.4 sim 8.4 times 10^4$ queries, a similar number of queries to state-of-the-art black-box image attacks. This is despite the fact that videos often have two orders of magnitude higher dimensionality than static images. We believe that V-BAD is a promising new tool to evaluate and improve the robustness of video recognition models to black-box adversarial attacks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا