ﻻ يوجد ملخص باللغة العربية
Determining the source regions of meteorites is one of the major goals of current research in planetary science. Whereas asteroid observations are currently unable to pinpoint the source regions of most meteorite classes, observations of meteors with camera networks and the subsequent recovery of the meteorite may help make progress on this question. The main caveat of such an approach, however, is that the recovery rate of meteorite falls is low, implying that the meteoritic analogues of at least 80% of the observed falls remain unknown. Aims: Spectroscopic observations of bolides may have the potential to mitigate this problem by classifying the incoming material. Methods: To probe the use of spectroscopy to determine the meteoritic analogues of bolides, we collected emission spectra in the visible range (320-880nm) of five meteorite types (H,L,LL,CM,eucrite) acquired in atmospheric entry-like conditions in a plasma wind tunnel at the University of Stuttgart (Germany). A detailed spectral analysis including line identification and mass ratio determinations (Mg/Fe,Na/Fe) was subsequently performed on all spectra. Results: Spectroscopy, via a simple line identification, allows us to distinguish the main meteorite classes (chondrites, achondrites and irons) but does not have the potential to distinguish for example an H from a CM chondrite. Conclusions: The source location within the main belt of the different meteorite classes (H, L, LL, CM, etc.) should continue to be investigated via fireball observation networks. Spectroscopy of incoming bolides only marginally helps precisely classify the incoming material (iron meteorites only). To reach a statistically significant sample of recovered meteorites along with accurate orbits (>100) within a reasonable time frame (10-20 years), the optimal solution may be the spatial extension of existing fireball observation networks.
The dispersion processes of aqueous samples of clay are studied using ultrasound attenuation spectroscopy. The attenuation spectra that are acquired in the frequency range $10-100$ MHz are used to determine the particle size distributions (PSDs) for
Despite ablation and drag processes associated with atmospheric entry of meteoroids were a subject of intensive study over the last century, little attention was devoted to interpret the observed fireball terminal height. This is a key parameter beca
Airless planetary bodies are covered by a dusty layer called regolith. The grain size of the regolith determines the temperature and the mechanical strength of the surface layers. Thus, knowledge of the grain size of planetary regolith helps to prepa
Infrasound monitoring has proved to be effective in detection of the meteor generated shock waves. When combined with optical observations of meteors, this technique is also reliable for detecting centimeter-sized meteoroids that usually ablate at hi
The solar system is dusty, and would become dustier over time as asteroids collide and comets disintegrate, except that small debris particles in interplanetary space do not last long. They can be ejected from the solar system by Jupiter, thermally d