ﻻ يوجد ملخص باللغة العربية
Infrasound monitoring has proved to be effective in detection of the meteor generated shock waves. When combined with optical observations of meteors, this technique is also reliable for detecting centimeter-sized meteoroids that usually ablate at high altitudes, thus offering relevant clues that open the exploration of the meteoroid flight regimes. Since a shock wave is formed as a result of a passage of the meteoroid through the atmosphere, the knowledge of the physical parameters of the surrounding gas around the meteoroid surface can be used to determine the meteor flow regime. This study analyses the flow regimes of a data set of twenty-four centimeter-sized meteoroids for which well constrained infrasound and photometric information is available. This is the first time that the flow regimes for meteoroids in this size range are validated from observations. From our approach, the Knudsen and Reynolds numbers are calculated, and two different flow regime evaluation approaches are compared in order to validate the theoretical formulation. The results demonstrate that a combination of fluid dynamic dimensionless parameters is needed to allow a better inclusion of the local physical processes of the phenomena.
Radar and optical simultaneous observations of meteors are important to understand the size distribution of the interplanetary dust. However, faint meteors detected by high power large aperture radar observations, which are typically as faint as 10 m
Recently, low frequency, broadband radio emission has been observed accompanying bright meteors by the Long Wavelength Array (LWA). The broadband spectra between 20 and 60 MHz were captured for several events, while the spectral index (dependence of
Determining the source regions of meteorites is one of the major goals of current research in planetary science. Whereas asteroid observations are currently unable to pinpoint the source regions of most meteorite classes, observations of meteors with
We present two state-of-the-art models of the solar system, one corresponding to the present day and one to the Archean Eon 3.5 billion years ago. Each model contains spatial and spectral information for the star, the planets, and the interplanetary
The solar system is dusty, and would become dustier over time as asteroids collide and comets disintegrate, except that small debris particles in interplanetary space do not last long. They can be ejected from the solar system by Jupiter, thermally d