ترغب بنشر مسار تعليمي؟ اضغط هنا

Use of ultrasound attenuation spectroscopy to determine the size distribution of clay tactoids in aqueous suspensions

240   0   0.0 ( 0 )
 نشر من قبل Ranjini Bandyopadhyay
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dispersion processes of aqueous samples of clay are studied using ultrasound attenuation spectroscopy. The attenuation spectra that are acquired in the frequency range $10-100$ MHz are used to determine the particle size distributions (PSDs) for different concentrations and ages of the clay suspensions. Our analysis, using equivalent spherical diameter (ESD) for circular discs under Stokes drag in samples of concentrations greater than 1.5% w/v, shows that a substantial fraction of the aggregates in suspension are actually tactoids that are composed of more than one platelet. This is in contrast to the general belief that clay disperses into individual platelets in the concentration range where their suspensions exhibit glassy behavior. We conclude that the incomplete fragmentation of the clay tactoids arises from the rapid enhancement of the inter-tactoid Coulombic repulsion.



قيم البحث

اقرأ أيضاً

Thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) particles of different sizes are synthesized by varying the concentration of sodium dodecyl sulphate (SDS) in a one-pot method. The sizes, size polydispersities and the thermoresponsivity of the P NIPAM particles are characterized by using dynamic light scattering and scanning electron microscopy. It is observed that the sizes of these particles decrease with increase in SDS concentration. Swelling ratios of PNIPAM particles measured from the thermoresponsive curves are observed to increase with decrease in particle size. This observation is understood by minimizing the Helmholtz free energy of the system with respect to the swelling ratio of the particles. Finally, the dynamics of these particles in jammed aqueous suspensions are investigated by performing rheological measurements.
Na-montmorillonite is a natural clay mineral and is available in abundance in nature. The aqueous dispersions of charged and anisotropic platelets of this mineral exhibit non-ergodic kinetically arrested states ranging from soft glassy phases dominat ed by interparticle repulsions to colloidal gels stabilized by salt induced attractive interactions. When the salt concentration in the dispersing medium is varied systematically, viscoelasticity and yield stress of the dispersion show non-monotonic behavior at a critical salt concentration, thus signifying a morphological change in the dispersion microstructures. We directly visualize the microscopic structures of these kinetically arrested phases using cryogenic scanning electron microscopy. We observe the existence of honeycomb-like network morphologies for a wide range of salt concentrations. The transition of the gel morphology, dominated by overlapping coin (OC) and house of cards (HoC) associations of clay particles at low salt concentrations to a new network structure dominated by face-face coagulation of platelets, is observed across the critical salt concentration. We further assess the stability of these gels under gravity using electroacoustics. This study, performed for concentrated clay dispersions for a wide concentration range of externally added salt, is useful in our understanding of many geophysical phenomena that involve the salt induced aggregation of natural clay minerals.
Aqueous colloidal Laponite clay suspensions transform spontaneously to a soft solid-like arrested state as its aging or waiting time increases. This article reports the rapid transformation of aqueous Laponite suspensions into soft solids due to the application of a DC electric field. A substantial increase in the speed of solidification at higher electric field strengths is also observed. The electric field is applied across two parallel brass plates immersed in the Laponite suspension. The subsequent solidification that takes place on the surface of the positive electrode is attributed to the dominant negative surface charges on the Laponite particles and the associated electrokinetic phenomena. With increasing electric field strength, a dramatic increase is recorded in the elastic moduli of the samples. These electric field induced Laponite soft solids demonstrate all the typical rheological characteristics of soft glassy materials. They also exhibit a two-step shear melting process similar to that observed in attractive soft glasses. The microstructures of the samples, studied using cryo-scanning electron microscopy (SEM), are seen to consist of percolated network gel-like structures, with the connectivity of the gel network increasing with increasing electric field strengths. In comparison with salt induced gels, the electric field induced gels studied here are mechanically stronger and more stable over longer periods of time
Determining the source regions of meteorites is one of the major goals of current research in planetary science. Whereas asteroid observations are currently unable to pinpoint the source regions of most meteorite classes, observations of meteors with camera networks and the subsequent recovery of the meteorite may help make progress on this question. The main caveat of such an approach, however, is that the recovery rate of meteorite falls is low, implying that the meteoritic analogues of at least 80% of the observed falls remain unknown. Aims: Spectroscopic observations of bolides may have the potential to mitigate this problem by classifying the incoming material. Methods: To probe the use of spectroscopy to determine the meteoritic analogues of bolides, we collected emission spectra in the visible range (320-880nm) of five meteorite types (H,L,LL,CM,eucrite) acquired in atmospheric entry-like conditions in a plasma wind tunnel at the University of Stuttgart (Germany). A detailed spectral analysis including line identification and mass ratio determinations (Mg/Fe,Na/Fe) was subsequently performed on all spectra. Results: Spectroscopy, via a simple line identification, allows us to distinguish the main meteorite classes (chondrites, achondrites and irons) but does not have the potential to distinguish for example an H from a CM chondrite. Conclusions: The source location within the main belt of the different meteorite classes (H, L, LL, CM, etc.) should continue to be investigated via fireball observation networks. Spectroscopy of incoming bolides only marginally helps precisely classify the incoming material (iron meteorites only). To reach a statistically significant sample of recovered meteorites along with accurate orbits (>100) within a reasonable time frame (10-20 years), the optimal solution may be the spatial extension of existing fireball observation networks.
Hypothesis: Aging in colloidal suspensions manifests as a reduction in kinetic freedom of the colloids. In aqueous suspensions of charged colloids, the role of inter-particle electrostatics interactions on the aging dynamics is well debated. Despite water being the dispersion medium, the influence of water structure on the physicochemical properties of aging colloids has never been considered before. Laponite, a model hectorite clay, could be used to evaluate the relative contributions of medium structure and electrostatics in determining the physicochemical properties of aging colloidal suspensions. Experiments: The structure of the dispersion medium is modified either by incorporating uncharged/charged kosmotropic (structure-inducing) or chaotropic (structure-disrupting) molecules or by changing suspension temperature. A new protocol, wherein the medium is heated before adding clay particles, is also introduced to evaluate the effects of hydrogen bond disruptions on suspension aging. Dynamic light scattering, rheological measurements and particle-scale imaging are employed to evaluate the physicochemical properties of the suspensions. Findings: A strong influence of medium structure is evident when inter-particle electrostatic interactions are weak. Enhancement and disruption of hydrogen bonds in the medium are, respectively, strongly correlated with acceleration and delay of suspension aging dynamics. The physicochemical properties of charged clay colloidal suspensions are therefore controlled by altering hydrogen bonding in the dispersion medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا