ترغب بنشر مسار تعليمي؟ اضغط هنا

Bistability of buoyancy-driven exchange flows in vertical tubes

108   0   0.0 ( 0 )
 نشر من قبل Tobias Keller
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Buoyancy-driven exchange flows are common to a variety of natural and engineering systems ranging from persistently active volcanoes to counterflows in oceanic straits. Experiments of exchange flows in closed vertical tubes have been used as surrogates to elucidate the basic features of such flows. The resulting data have historically been analyzed and interpreted through core-annular flow solutions, the most common flow configuration at finite viscosity contrasts. These models have been successful in fitting experimental data, but less effective at explaining the variability observed in natural systems. In this paper, we formulate a core-annular solution to the classical problem of buoyancy-driven exchange flows in vertical tubes. The model posits the existence of two mathematically valid solutions, i.e. thin- and thick-core solutions. The theoretical existence of two solutions, however, does not necessarily imply that the system is bistable in the sense that flow switching may occur. Using direct numerical simulations, we test the hypothesis that core-annular flow in vertical tubes is bistable, which implies that the realized flow field is not uniquely defined by the material parameters of the flow. Our numerical experiments, which fully predict experimental data without fitting parameters, demonstrate that buoyancy-driven exchange flows are indeed inherently bistable systems. This finding is consistent with previous experimental data, but in contrast to the underlying hypothesis of previous analytical models that the solution is unique and can be identified by maximizing the flux or extremizing the dissipation in the system. These results have important implications for data interpretation by analytical models, and may also have relevant ramifications for understanding volcanic degassing.

قيم البحث

اقرأ أيضاً

82 - N. Adami , H. Caps 2013
The present study aims to investigate the motion of buoyant rings in vertical soap films. Thickness differences and related bi-dimensional densities are considered as the motor leading to bi-dimensional buoyancy. We show how this effect can be re-int erpreted thanks to surface tension profiles in soap films. We propose a model involving surface tension profiles in order to describe the motion of buoyant particles in vertical soap films, and compare it to experimental data.
The behaviour of the turbulent Prandtl number ($Pr_t$) for buoyancy-affected flows near a vertical surface is investigated as an extension study of {Gibson & Leslie, emph{Int. Comm. Heat Mass Transfer}, Vol. 11, pp. 73-84 (1984)}. By analysing the lo cation of mean velocity maxima in a differentially heated vertical planar channel, we {identify an} {infinity anomaly} for the eddy viscosity $ u_t$ and the turbulent Prandtl number $Pr_t$, as both terms are divided by the mean velocity gradient according to the standard definition, in vertical buoyant flow. To predict the quantities of interest, e.g. the Nusselt number, a machine learning framework via symbolic regression is used with various cost functions, e.g. the mean velocity gradient, with the aid of the latest direct numerical simulation (DNS) dataset for vertical natural and mixed convection. The study has yielded two key outcomes: $(i)$ the new machine learnt algebraic models, as the reciprocal of $Pr_t$, successfully handle the infinity issue for both vertical natural and mixed convection; and $(ii)$ the proposed models with embedded coordinate frame invariance can be conveniently implemented in the Reynolds-averaged scalar equation and are proven to be robust and accurate in the current parameter space, where the Rayleigh number spans from $10^5$ to $10^9 $ for vertical natural convection and the bulk Richardson number $Ri_b $ is in the range of $ 0$ and $ 0.1$ for vertical mixed convection.
Laboratory experiments were conducted to study heat transport characteristics in a nonhomogeneously heated fluid annulus subjected to rotation along the vertical axis (z). The nonhomogeneous heating was obtained by imposing radial and vertical temper ature gradient ({Delta}T). The parameter range for this study was Rayleigh number, Ra=2.43x10^8-3.66x10^8, and Taylor number, Ta=6.45x10^8-27x10^8. The working fluid was water with a Prandtl number, Pr=7. Heat transport was measured for varying rotation rates ({Omega}) for fixed values of {Delta}T. The Nusselt number, Nu, plotted as a function of Ta distinctly showed the effect of rotation on heat transport. In general, Nu was found to have a larger value for non-rotating convection. This could mean an interplay of columnar plumes and baroclinic wave in our system as also evident from temperature measurements. Laser based imaging at a single vertical plane also showed evidence of such flow structure.
347 - Jelle Will , Dominik Krug 2020
We present experimental results for spherical particles rising and settling in a still fluid. Imposing a well-controlled center of mass offset enables us to vary the rotational dynamics selectively by introducing an intrinsic rotational timescale to the problem. Results are highly sensitive even to small degrees of offset, rendering this a practically relevant parameter by itself. We further find that for a certain ratio of the rotational to a vortex shedding timescale (capturing a Froude-type similarity) a resonance phenomenon sets in. Even though this is a rotational effect in origin, it also strongly affects translational oscillation frequency and amplitude, and most importantly the drag coefficient. This observation equally applies to both heavy and light spheres, albeit with slightly different characteristics for which we offer an explanation. Our findings highlight the need to consider rotational parameters when trying to understand and classify path properties of rising and settling spheres.
129 - Jerome Noir 2014
We study the flow forced by precession in rigid non-axisymmetric ellipsoidal containers. To do so, we revisit the inviscid and viscous analytical models that have been previously developed for the spheroidal geometry by, respectively, Poincare (Bull. Astronomique, vol. XXVIII, 1910, pp. 1-36) and Busse (J. Fluid Mech., vol. 33, 1968, pp. 739-751), and we report the first numerical simulations of flows in such a geometry. In strong contrast with axisymmetric spheroids, where the forced flow is systematically stationary in the precessing frame, we show that the forced flow is unsteady and periodic. Comparisons of the numerical simulations with the proposed theoretical model show excellent agreement for both axisymmetric and non-axisymmetric containers. Finally, since the studied configuration corresponds to a tidally locked celestial body such as the Earths Moon, we use our model to investigate the challenging but planetary-relevant limit of very small Ekman numbers and the particular case of our Moon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا