ﻻ يوجد ملخص باللغة العربية
We study the flow forced by precession in rigid non-axisymmetric ellipsoidal containers. To do so, we revisit the inviscid and viscous analytical models that have been previously developed for the spheroidal geometry by, respectively, Poincare (Bull. Astronomique, vol. XXVIII, 1910, pp. 1-36) and Busse (J. Fluid Mech., vol. 33, 1968, pp. 739-751), and we report the first numerical simulations of flows in such a geometry. In strong contrast with axisymmetric spheroids, where the forced flow is systematically stationary in the precessing frame, we show that the forced flow is unsteady and periodic. Comparisons of the numerical simulations with the proposed theoretical model show excellent agreement for both axisymmetric and non-axisymmetric containers. Finally, since the studied configuration corresponds to a tidally locked celestial body such as the Earths Moon, we use our model to investigate the challenging but planetary-relevant limit of very small Ekman numbers and the particular case of our Moon.
The ability to create dynamic deformations of micron-sized structures is relevant to a wide variety of applications such as adaptable optics, soft robotics, and reconfigurable microfluidic devices. In this work we examine non-uniform lubrication flow
We reveal and investigate a new type of linear axisymmetric helical magnetorotational instability which is capable of destabilizing viscous and resistive rotational flows with radially increasing angular velocity, or positive shear. This instability
To date, the influence of non-linear stratifications and two layer stratifications on internal wave propagation has been studied for two-dimensional wave fields in a cartesian geometry. Here, we use a novel wave generator configuration to investigate
Effects of spinning motion on the bouncing and coalescence between a spinning droplet and a non-spinning droplet undergoing the head-on collision were numerically studied by using a Volume-of-Fluid method. A prominent discovery is that the spinning d
We investigate the internal flow pattern of an evaporating droplet using tomographic particle image velocimetry (PIV) when the contact line non-uniformly recedes. We observe a three-dimensional azimuthal vortex pair while the contact line non-uniform