ترغب بنشر مسار تعليمي؟ اضغط هنا

Floating rings in vertical soap films : capillary driven bidimensional buoyancy

83   0   0.0 ( 0 )
 نشر من قبل Herve Caps
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The present study aims to investigate the motion of buoyant rings in vertical soap films. Thickness differences and related bi-dimensional densities are considered as the motor leading to bi-dimensional buoyancy. We show how this effect can be re-interpreted thanks to surface tension profiles in soap films. We propose a model involving surface tension profiles in order to describe the motion of buoyant particles in vertical soap films, and compare it to experimental data.

قيم البحث

اقرأ أيضاً

Buoyancy-driven exchange flows are common to a variety of natural and engineering systems ranging from persistently active volcanoes to counterflows in oceanic straits. Experiments of exchange flows in closed vertical tubes have been used as surrogat es to elucidate the basic features of such flows. The resulting data have historically been analyzed and interpreted through core-annular flow solutions, the most common flow configuration at finite viscosity contrasts. These models have been successful in fitting experimental data, but less effective at explaining the variability observed in natural systems. In this paper, we formulate a core-annular solution to the classical problem of buoyancy-driven exchange flows in vertical tubes. The model posits the existence of two mathematically valid solutions, i.e. thin- and thick-core solutions. The theoretical existence of two solutions, however, does not necessarily imply that the system is bistable in the sense that flow switching may occur. Using direct numerical simulations, we test the hypothesis that core-annular flow in vertical tubes is bistable, which implies that the realized flow field is not uniquely defined by the material parameters of the flow. Our numerical experiments, which fully predict experimental data without fitting parameters, demonstrate that buoyancy-driven exchange flows are indeed inherently bistable systems. This finding is consistent with previous experimental data, but in contrast to the underlying hypothesis of previous analytical models that the solution is unique and can be identified by maximizing the flux or extremizing the dissipation in the system. These results have important implications for data interpretation by analytical models, and may also have relevant ramifications for understanding volcanic degassing.
The behaviour of the turbulent Prandtl number ($Pr_t$) for buoyancy-affected flows near a vertical surface is investigated as an extension study of {Gibson & Leslie, emph{Int. Comm. Heat Mass Transfer}, Vol. 11, pp. 73-84 (1984)}. By analysing the lo cation of mean velocity maxima in a differentially heated vertical planar channel, we {identify an} {infinity anomaly} for the eddy viscosity $ u_t$ and the turbulent Prandtl number $Pr_t$, as both terms are divided by the mean velocity gradient according to the standard definition, in vertical buoyant flow. To predict the quantities of interest, e.g. the Nusselt number, a machine learning framework via symbolic regression is used with various cost functions, e.g. the mean velocity gradient, with the aid of the latest direct numerical simulation (DNS) dataset for vertical natural and mixed convection. The study has yielded two key outcomes: $(i)$ the new machine learnt algebraic models, as the reciprocal of $Pr_t$, successfully handle the infinity issue for both vertical natural and mixed convection; and $(ii)$ the proposed models with embedded coordinate frame invariance can be conveniently implemented in the Reynolds-averaged scalar equation and are proven to be robust and accurate in the current parameter space, where the Rayleigh number spans from $10^5$ to $10^9 $ for vertical natural convection and the bulk Richardson number $Ri_b $ is in the range of $ 0$ and $ 0.1$ for vertical mixed convection.
94 - N. Adami , A. Delbos , B. Roman 2013
Flexible rings and rectangle structures floating at the surface of water are prone to deflect under the action of surface pressure induced by the addition of surfactant molecules on the bath. While the frames of rectangles bend inward or outward for any surface pressure difference, circles are only deformed by compression beyond a critical buckling load. However, compressed frames also undergo a secondary buckling instability leading to a rhoboidal shape. Following the pioneering works of cite{Hu} and cite{Zell}, we describe both experimentally and theoretically the different elasto-capillary deflection and buckling modes as a function of the material parameters. In particular we show how this original fluid structure interaction may be used to probe the adsorption of surfactant molecules at liquid interfaces.
Vertical convection is investigated using direct numerical simulations over a wide range of Rayleigh numbers $10^7le Rale10^{14}$ with fixed Prandtl number $Pr=10$, in a two-dimensional convection cell with unit aspect ratio. It is found that the dep endence of the mean vertical centre temperature gradient $S$ on $Ra$ shows three different regimes: In regime I ($Ra lesssim 5times10^{10}$), $S$ is almost independent of $Ra$; In the newly identified regime II ($5times10^{10} lesssim Ra lesssim 10^{13}$), $S$ first increases with increasing $Ra$ (regime ${rm{II}}_a$), reaches its maximum and then decreases again (regime ${rm{II}}_b$); In regime III ($Ragtrsim10^{13}$), $S$ again becomes only weakly dependent on $Ra$, being slightly smaller than in regime I. The transitions between diffeereent regimes are discussd. In the three different regimes, significantly different flow organizations are identified: In regime I and regime ${rm{II}}_a$, the location of the maximal horizontal velocity is close to the top and bottom walls; However, in regime ${rm{II}}_b$ and regime III, banded zonal flow structures develop and the maximal horizontal velocity now is in the bulk region. The different flow organizations in the three regimes are also reflected in the scaling exponents in the effective power law scalings $Nusim Ra^beta$ and $Resim Ra^gamma$. In regime I, the fitted scaling exponents ($betaapprox0.26$ and $gammaapprox0.51$) are in excellent agreement with the theoretical predication of $beta=1/4$ and $gamma=1/2$ for laminar VC (Shishkina, {it{Phys. Rev. E.}} 2016, 93, 051102). However, in regimes II and III, $beta$ increases to a value close to 1/3 and $gamma$ decreases to a value close to 4/9. The stronger $Ra$ dependence of $Nu$ is related to the ejection of plumes and larger local heat flux at the walls.
75 - H. Ji , C. Falcon , A. Sadeghpour 2018
Recent experiments of thin films flowing down a vertical fiber with varying nozzle diameters present a wealth of new dynamics that illustrate the need for more advanced theory. We present a detailed analysis using a full lubrication model that includ es slip boundary conditions, nonlinear curvature terms, and a film stabilization term. This study brings to focus the presence of a stable liquid layer playing an important role in the full dynamics. We propose a combination of these physical effects to explain the observed velocity and stability of traveling droplets in the experiments and their transition to isolated droplets. This is also supported by stability analysis of the traveling wave solution of the model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا