ترغب بنشر مسار تعليمي؟ اضغط هنا

Atomic structure of intrinsic and electron-irradiation-induced defects in MoTe2

65   0   0.0 ( 0 )
 نشر من قبل Jani Kotakoski
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Studying the atomic structure of intrinsic defects in two-dimensional transition metal dichalcogenides is difficult since they damage quickly under the intense electron irradiation in transmission electron microscopy (TEM). However, this can also lead to insights into the creation of defects and their atom-scale dynamics. We first show that MoTe 2 monolayers without protection indeed quickly degrade during scanning TEM (STEM) imaging, and discuss the observed atomic-level dynamics, including a transformation from the 1H phase into 1T, three-fold rotationally symmetric defects, and the migration of line defects between two 1H grains with a 60{deg} misorientation. We then analyze the atomic structure of MoTe2 encapsulated between two graphene sheets to mitigate damage, finding the as-prepared material to contain an unexpectedly large concentration of defects. These include similar point defects (or quantum dots, QDs) as those created in the non-encapsulated material, and two different types of line defects (or quantum wires, QWs) that can be transformed from one to the other under electron irradiation. Our density functional theory simulations indicate that the QDs and QWs embedded in MoTe2 introduce new midgap states into the semiconducting material, and may thus be used to control its electronic and optical properties. Finally, the edge of the encapsulated material appears amorphous, possibly due to the pressure caused by the encapsulation.



قيم البحث

اقرأ أيضاً

The low energy structures of irradiation-induced defects have been studied in detail, as these determine the available modes by which a defect can diffuse or relax. As a result, there are many studies concerning the relative energies of possible defe ct structures, and empirical potentials are commonly fitted to or evaluated with respect to these energies. But recently [Dudarev et al Nuclear Fusion 2018], we have shown how to determine the stresses, strains and swelling of reactor components under irradiation from the elastic properties of ensembles of irradiation-induced defects. These elastic properties have received comparatively little attention. Here we evaluate relaxation volumes of irradiation-induced defects in tungsten computed with empirical potentials, and compare to density functional theory results where available. Different empirical potentials give different results, but some potential-independent trends in relaxation volumes can be identified. We show that the relaxation volume of small defects can be predicted to within 10% from their point-defect count. For larger defects we provide empirical fits for the relaxation volume of as a function of size. We demonstrate that the relaxation volume associated with a single primary-damage cascade can be estimated from the primary knock-on atom (PKA) energy. We conclude that while annihilation of vacancy- and interstitial- character defects will invariably reduce the total relaxation volume of the cascade debris, empirical potentials disagree whether coalescence of defects will reduce or increase the total relaxation volume.
Structural as well as magnetization studies have been carried out on graphite samples irradiated by neutrons over 50 years in the CIRUS research reactor at Trombay. Neutron diffraction studies reveal that the defects in irradiated graphite samples ar e not well annealed and remain significant up to high temperatures much greater than 653 K where the Wigner energy is completely released. We infer that the remnant defects may be intralayer Frenkel defects, which do not store large energy, unlike the interlayer Frenkel defects that store the Wigner energy. Magnetization studies on the irradiated graphite show ferromagnetic behavior even at 300 K and a large additional paramagnetic contribution at 5 K. Ab-initio calculations based on the spin-polarized density-functional theory show that the magnetism in defected graphite is essentially confined on to a single 2-coordinated carbon atom that is located around a vacancy in the hexagonal layer.
The delafossite metals PdCoO$_{2}$, PtCoO$_{2}$ and PdCrO$_{2}$ are among the highest conductivity materials known, with low temperature mean free paths of tens of microns in the best as-grown single crystals. A key question is whether these very low resistive scattering rates result from strongly suppressed backscattering due to special features of the electronic structure, or are a consequence of highly unusual levels of crystalline perfection. We report the results of experiments in which high energy electron irradiation was used to introduce point disorder to the Pd and Pt layers in which the conduction occurs. We obtain the cross-section for formation of Frenkel pairs in absolute units, and cross-check our analysis with first principles calculations of the relevant atomic displacement energies. We observe an increase of resistivity that is linear in defect density with a slope consistent with scattering in the unitary limit. Our results enable us to deduce that the as-grown crystals contain extremely low levels of in-plane defects of approximately $0.001%$. This confirms that crystalline perfection is the most important factor in realizing the long mean free paths, and highlights how unusual these delafossite metals are in comparison with the vast majority of other multi-component oxides and alloys. We discuss the implications of our findings for future materials research.
The millimeter sized monolayer and bilayer 2H-MoTe2 single crystal samples are prepared by a new mechanical exfoliation method. Based on such high-quality samples, we report the first direct electronic structure study on them, using standard high res olution angle-resolved photoemission spectroscopy (ARPES). A direct band gap of 0.924eV is found at K in the rubidium-doped monolayer MoTe2. Similar valence band alignment is also observed in bilayer MoTe2,supporting an assumption of a analogous direct gap semiconductor on it. Our measurements indicate a rather large band splitting of 212meV at the valence band maximum (VBM) in monolayer MoTe2, and the splitting is systematically enlarged with layer stacking, from monolayer to bilayer and to bulk. Meanwhile, our PBE band calculation on these materials show excellent agreement with ARPES results. Some fundamental electronic parameters are derived from the experimental and calculated electronic structures. Our findings lay a foundation for further application-related study on monolayer and bilayer MoTe2.
Zinc Phosphide ($Zn_3P_2$) could be the basis for cheap and highly efficient solar cells. Its use in this regard is limited by the difficulty in n-type doping the material. In an effort to understand the mechanism behind this, the energetics and elec tronic structure of intrinsic point defects in zinc phosphide are studied using generalized Kohn-Sham theory and utilizing the Heyd, Scuseria, and Ernzerhof (HSE) hybrid functional for exchange and correlation. Novel perturbation extrapolation is utilized to extend the use of the computationally expensive HSE functional to this large-scale defect system. According to calculations, the formation energy of charged phosphorus interstitial defects are very low in n-type $Zn_3P_2$ and act as electron sinks, nullifying the desired doping and lowering the fermi-level back towards the p-type regime. This is consistent with experimental observations of both the tendency of conductivity to rise with phosphorus partial pressure, and with current partial successes in n-type doping in very zinc-rich growth conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا