ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct Measurement of the Electronic Structure and band gap nature of atomic-layer-thick 2H-MoTe2

198   0   0.0 ( 0 )
 نشر من قبل Guodong Liu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The millimeter sized monolayer and bilayer 2H-MoTe2 single crystal samples are prepared by a new mechanical exfoliation method. Based on such high-quality samples, we report the first direct electronic structure study on them, using standard high resolution angle-resolved photoemission spectroscopy (ARPES). A direct band gap of 0.924eV is found at K in the rubidium-doped monolayer MoTe2. Similar valence band alignment is also observed in bilayer MoTe2,supporting an assumption of a analogous direct gap semiconductor on it. Our measurements indicate a rather large band splitting of 212meV at the valence band maximum (VBM) in monolayer MoTe2, and the splitting is systematically enlarged with layer stacking, from monolayer to bilayer and to bulk. Meanwhile, our PBE band calculation on these materials show excellent agreement with ARPES results. Some fundamental electronic parameters are derived from the experimental and calculated electronic structures. Our findings lay a foundation for further application-related study on monolayer and bilayer MoTe2.



قيم البحث

اقرأ أيضاً

When a crystal becomes thinner and thinner to the atomic level, peculiar phenomena discretely depending on its layer-numbers (n) start to appear. The symmetry and wave functions strongly reflect the layer-numbers and stacking order, which brings us a potential of realizing new properties and functions that are unexpected in either bulk or simple monolayer. Multilayer WTe2 is one such example exhibiting unique ferroelectricity and non-linear transport properties related to the antiphase stacking and Berry-curvature dipole. Here we investigate the electronic band dispersions of multilayer WTe2 (2-5 layers), by performing laser-based micro-focused angle-resolved photoelectron spectroscopy on exfoliated-flakes that are strictly sorted by n and encapsulated by graphene. We clearly observed the insulator-semimetal transition occurring between 2- and 3-layers, as well as the 30-70 meV spin-splitting of valence bands manifesting in even n as a signature of stronger structural asymmetry. Our result fully demonstrates the possibility of the large energy-scale band and spin manipulation through the finite n stacking procedure.
Phosphorene, a single atomic layer of black phosphorus, has recently emerged as a new twodimensional (2D) material that holds promise for electronic and photonic technology. Here we experimentally demonstrate that the electronic structure of few-laye r phosphorene varies significantly with the number of layers, in good agreement with theoretical predictions. The interband optical transitions cover a wide, technologically important spectrum range from visible to mid-infrared. In addition, we observe strong photoluminescence in few-layer phosphorene at energies that match well with the absorption edge, indicating they are direct bandgap semiconductors. The strongly layer-dependent electronic structure of phosphorene, in combination with its high electrical mobility, gives it distinct advantages over other twodimensional materials in electronic and opto-electronic applications.
200 - M. Sprinkle , D. Siegel , Y. Hu 2009
Angle-resolved photoemission and X-ray diffraction experiments show that multilayer epitaxial graphene grown on the SiC(000-1) surface is a new form of carbon that is composed of effectively isolated graphene sheets. The unique rotational stacking of these films cause adjacent graphene layers to electronically decouple leading to a set of nearly independent linearly dispersing bands (Dirac cones) at the graphene K-point. Each cone corresponds to an individual macro-scale graphene sheet in a multilayer stack where AB-stacked sheets can be considered as low density faults.
We have predicted a new phase of nitrogen with octagon structure in our previous study, which we referred to as octa-nitrogene (ON). In this work, we make further investigation on its electronic structure. The phonon band structure has no imaginary p honon modes, which indicates that ON is dynamically stable. Using ab initio molecular dynamic simulations, the structure is found to stable up to 100K, and ripples that are similar to that of graphene is formed on the ON sheet. Based on DFT calculation on its band structure, single layer ON is a 2D large-gap semiconductor with a band gap of 4.7eV. Because of inter-layer interaction, stackings can decrease the band gap. Biaxial tensile strain and perpendicular electric field can greatly influence the band structure of ON, in which the gap decreases and eventually closes as the biaxial tensile strain or the perpendicular electric field increases. In other words, both biaxial tensile strain and perpendicular electric field can drive the insulator-to-metal transition, and thus can be used to engineer the band gap of ON. From our results, ON has potential applications in the electronics, semiconductors, optics and spintronics, and so on.
The atomic structure at the interface between a two-dimensional (2D) and a three-dimensional (3D) material influences properties such as contact resistance, photo-response, and high-frequency performance. Moire engineering has yet to be explored for tailoring this 2D/3D interface, despite its success in enabling correlated physics at 2D/2D twisted van der Waals interfaces. Using epitaxially aligned MoS$_2$ /Au{111} as a model system, we apply a geometric convolution technique and four-dimensional scanning transmission electron microscopy (4D STEM) to show that the 3D nature of the Au structure generates two coexisting moire periods (18 Angstroms and 32 Angstroms) at the 2D/3D interface that are otherwise hidden in conventional electron microscopy imaging. We show, via ab initio electronic structure calculations, that charge density is modulated with the longer of these moire periods, illustrating the potential for (opto-)electronic modulation via moire engineering at the 2D/3D interface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا