ترغب بنشر مسار تعليمي؟ اضغط هنا

On the separability of unitarily invariant random quantum states - the unbalanced regime

205   0   0.0 ( 0 )
 نشر من قبل Ion Nechita
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ion Nechita




اسأل ChatGPT حول البحث

We study entanglement-related properties of random quantum states which are unitarily invariant, in the sense that their distribution is left unchanged by conjugation with arbitrary unitary operators. In the large matrix size limit, the distribution of these random quantum states is characterized by their limiting spectrum, a compactly supported probability distribution. We prove several results characterizing entanglement and the PPT property of random bipartite unitarily invariant quantum states in terms of the limiting spectral distribution, in the unbalanced asymptotical regime where one of the two subsystems is fixed, while the other one grows in size.



قيم البحث

اقرأ أيضاً

We study the entropy of pure shift-invariant states on a quantum spin chain. Unlike the classical case, the local restrictions to intervals of length $N$ are typically mixed and have therefore a non-zero entropy $S_N$ which is, moreover, monotonicall y increasing in $N$. We are interested in the asymptotics of the total entropy. We investigate in detail a class of states derived from quasi-free states on a CAR algebra. These are characterised by a measurable subset of the unit interval. As the entropy density is known to vanishes, $S_N$ is sublinear in $N$. For states corresponding to unions of finitely many intervals, $S_N$ is shown to grow slower than $(log N)^2$. Numerical calculations suggest a $log N$ behaviour. For the case with infinitely many intervals, we present a class of states for which the entropy $S_N$ increases as $N^alpha$ where $alpha$ can take any value in $(0,1)$.
Quantum trajectories are Markov processes that describe the time-evolution of a quantum system undergoing continuous indirect measurement. Mathematically, they are defined as solutions of the so-called Stochastic Schrodinger Equations, which are nonl inear stochastic differential equations driven by Poisson and Wiener processes. This paper is devoted to the study of the invariant measures of quantum trajectories. Particularly, we prove that the invariant measure is unique under an ergodicity condition on the mean time evolution, and a purification condition on the generator of the evolution. We further show that quantum trajectories converge in law exponentially fast towards this invariant measure. We illustrate our results with examples where we can derive explicit expressions for the invariant measure.
This is an elementary review, aimed at non-specialists, of results that have been obtained for the limiting distribution of eigenvalues and for the operator norms of real symmetric random matrices via the method of moments. This method goes back to a remarkable argument of Eugen Wigner some sixty years ago which works best for independent matrix entries, as far as symmetry permits, that are all centered and have the same variance. We then discuss variations of this classical result for ensembles for which the variance may depend on the distance of the matrix entry to the diagonal, including in particular the case of band random matrices, and/or for which the required independence of the matrix entries is replaced by some weaker condition. This includes results on ensembles with entries from Curie-Weiss random variables or from sequences of exchangeable random variables that have been obtained quite recently.
223 - Paolo Aniello 2019
We introduce the notion of stochastic product as a binary operation on the convex set of quantum states (the density operators) that preserves the convex structure, and we investigate its main consequences. We consider, in particular, stochastic prod ucts that are covariant wrt a symmetry action of a locally compact group. We then construct an interesting class of group-covariant, associative stochastic products, the so-called twirled stochastic products. Every binary operation in this class is generated by a triple formed by a square integrable projective representation of a locally compact group, by a probability measure on that group and by a fiducial density operator acting in the carrier Hilbert space of the representation. The salient properties of such a product are studied. It is argued, in particular, that, extending this binary operation from the density operators to the whole Banach space of trace class operators, this space becomes a Banach algebra, a so-called twirled stochastic algebra. This algebra is shown to be commutative in the case where the relevant group is abelian. In particular, the commutative stochastic products generated by the Weyl system are treated in detail. Finally, the physical interpretation of twirled stochastic products and various interesting connections with the literature are discussed.
A new family of polarized ensembles of random pure states is presented. These ensembles are obtained by linear superposition of two random pure states with suitable distributions, and are quite manageable. We will use the obtained results for two pur poses: on the one hand we will be able to derive an efficient strategy for sampling states from isopurity manifolds. On the other, we will characterize the deviation of a pure quantum state from separability under the influence of noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا