ﻻ يوجد ملخص باللغة العربية
Using the framework of noncommutative Kahler structures, we generalise to the noncommutative setting the celebrated vanishing theorem of Kodaira for positive line bundles. The result is established under the assumption that the associated Dirac-Dolbeault operator of the line bundle is diagonalisable, an assumption that is shown to always hold in the quantum homogeneous space case. The general theory is then applied to the covariant Kahler structure of the Heckenberger-Kolb calculus of the quantum Grassmannians allowing us to prove a direct q-deformation of the classical Grassmannian Bott-Borel-Weil theorem for positive line bundles.
After an overview of noncommutative differential calculus, we construct parts of it explicitly and explain why this construction agrees with a fuller version obtained from the theory of operads.
We introduce a new formalism of differential operators for a general associative algebra A. It replaces Grothendiecks notion of differential operator on a commutative algebra in such a way that derivations of the commutative algebra are replaced by D
The paper is suspended. The reason: as was noted by prof. H. Esnault, Theorem 2.1.1 of the previous version (as well as the related Theorem 6.1.1 of http://arxiv.org/PS_cache/math/pdf/9908/9908037v2.pdf of D. Arapura and P. Sastry) is wrong unless on
We establish the analogue of the Friedlander-Mazur conjecture for Tehs reduced Lawson homology groups of real varieties, which says that the reduced Lawson homology of a real quasi-projective variety $X$ vanishes in homological degrees larger than th
Using inversion of adjunction, we deduce from Nadels theorem a vanishing property for ideals sheaves on projective varieties, a special case of which recovers a result due to Bertram--Ein--Lazarsfeld. This enables us to generalize to a large class of