ترغب بنشر مسار تعليمي؟ اضغط هنا

Differential operators and BV structures in noncommutative geometry

128   0   0.0 ( 0 )
 نشر من قبل Travis Schedler
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new formalism of differential operators for a general associative algebra A. It replaces Grothendiecks notion of differential operator on a commutative algebra in such a way that derivations of the commutative algebra are replaced by DDer(A), the bimodule of double derivations. Our differential operators act not on the algebra A itself but rather on F(A), a certain `Fock space associated to any noncommutative algebra A in a functorial way. The corresponding algebra D(F(A)), of differential operators, is filtered and gr D(F(A)), the associated graded algebra, is commutative in some `twisted sense. The resulting double Poisson structure on gr D(F(A)) is closely related to the one introduced by Van den Bergh. Specifically, we prove that gr D(F(A))=F(T_A(DDer(A)), provided A is smooth. It is crucial for our construction that the Fock space F(A) carries an extra-structure of a wheelgebra, a new notion closely related to the notion of a wheeled PROP. There are also notions of Lie wheelgebras, and so on. In that language, D(F(A)) becomes the universal enveloping wheelgebra of a Lie wheelgebroid of double derivations. In the second part of the paper we show, extending a classical construction of Koszul to the noncommutative setting, that any Ricci-flat, torsion-free bimodule connection on DDer(A) gives rise to a second order (wheeled) differential operator, a noncommutative analogue of the BV-operator.



قيم البحث

اقرأ أيضاً

163 - Alastair Hamilton 2007
In this paper we show that the homology of a certain natural compactification of the moduli space, introduced by Kontsevich in his study of Wittens conjectures, can be described completely algebraically as the homology of a certain differential grade d Lie algebra. This two-parameter family is constructed by using a Lie cobracket on the space of noncommutative 0-forms, a structure which corresponds to pinching simple closed curves on a Riemann surface, to deform the noncommutative symplectic geometry described by Kontsevich in his subsequent papers.
411 - Jack Jeffries 2017
In their work on differential operators in positive characteristic, Smith and Van den Bergh define and study the derived functors of differential operators; they arise naturally as obstructions to differential operators reducing to positive character istic. In this note, we provide formulas for the ring of differential operators as well as these derived functors of differential operators. We apply these descriptions to show that differential operators behave well under reduction to positive characteristic under certain hypotheses. We show that these functors also detect a number of interesting properties of singularities.
This is the text of a series of five lectures given by the author at the Second Annual Spring Institute on Noncommutative Geometry and Operator Algebras held at Vanderbilt University in May 2004. It is meant as an overview of recent results illustrat ing the interplay between noncommutative geometry and arithmetic geometry/number theory.
282 - Debashish Goswami 2007
We formulate a quantum generalization of the notion of the group of Riemannian isometries for a compact Riemannian manifold, by introducing a natural notion of smooth and isometric action by a compact quantum group on a classical or noncommutative ma nifold described by spectral triples, and then proving the existence of a universal object (called the quantum isometry group) in the category of compact quantum groups acting smoothly and isometrically on a given (possibly noncommutative) manifold satisfying certain regularity assumptions. In fact, we identify the quantum isometry group with the universal object in a bigger category, namely the category of `quantum families of smooth isometries, defined along the line of Woronowicz and Soltan. We also construct a spectral triple on the Hilbert space of forms on a noncommutative manifold which is equivariant with respect to a natural unitary representation of the quantum isometry group. We give explicit description of quantum isometry groups of commutative and noncommutative tori, and in this context, obtain the quantum double torus defined in cite{hajac} as the universal quantum group of holomorphic isometries of the noncommutative torus.
We prove a Koszul formula for the Levi-Civita connection for any pseudo-Riemannian bilinear metric on a class of centered bimodule of noncommutative one-forms. As an application to the Koszul formula, we show that our Levi-Civita connection is a bimo dule connection. We construct a spectral triple on a fuzzy sphere and compute the scalar curvature for the Levi-Civita connection associated to a canonical metric.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا