ﻻ يوجد ملخص باللغة العربية
The paper is suspended. The reason: as was noted by prof. H. Esnault, Theorem 2.1.1 of the previous version (as well as the related Theorem 6.1.1 of http://arxiv.org/PS_cache/math/pdf/9908/9908037v2.pdf of D. Arapura and P. Sastry) is wrong unless one assumes H to be a generic hyperplane section. Hence the proofs of all results starting from 2.3 contain gaps. The author hopes to correct this (somehow) in a future version. At least, most of the results follow from certain standard motivic conjectures (see part 1 of Remark 3.2.4 in the previous version). If the author would not find a way to prove Theorems 2.3.1 and 2.3.2 (without 2.1.1), then in the next version of the preprint the results of section 4 will be deduced from certain conjectures; certainly this is not a very exiting result.
We show that the category of motivic spaces with transfers along finite flat morphisms, over a perfect field, satisfies all the properties we have come to expect of good categories of motives. In particular we establish the analog of Voevodskys cancellation theorem.
We establish the analogue of the Friedlander-Mazur conjecture for Tehs reduced Lawson homology groups of real varieties, which says that the reduced Lawson homology of a real quasi-projective variety $X$ vanishes in homological degrees larger than th
We prove a topological invariance statement for the Morel-Voevodsky motivic homotopy category, up to inverting exponential characteristics of residue fields. This implies in particular that SH[1/p] of characteristic p>0 schemes is invariant under pas
In this note, we provide an axiomatic framework that characterizes the stable $infty$-categories that are module categories over a motivic spectrum. This is done by invoking Luries $infty$-categorical version of the Barr--Beck theorem. As an applicat
We construct a period regulator for motivic cohomology of an algebraic scheme over a subfield of the complex numbers. For the field of algebraic numbers we formulate a period conjecture for motivic cohomology by saying that this period regulator is s