ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling redshift-space distortion in the post-reionization ${rm HI}$ 21-cm power spectrum

91   0   0.0 ( 0 )
 نشر من قبل Debanjan Sarkar
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The post-reionization ${rm HI}$ 21-cm signal is an excellent candidate for precision cosmology, this however requires accurate modelling of the expected signal. Sarkar et al. (2016) have simulated the real space ${rm HI}$ 21-cm signal, and have modelled the ${rm HI}$ power spectrum as $P_{{rm HI}}(k)=b^2 P(k)$ where $P(k)$ is the dark matter power spectrum and $b(k)$ is a (possibly complex) scale dependent bias for which fitting formulas have been provided. This paper extends these simulations to incorporate redshift space distortion and predict the expected redshift space ${rm HI}$ 21-cm power spectrum $P^s_{{rm HI}}(k_{perp},k_{parallel})$ using two different prescriptions for the ${rm HI}$ distributions and peculiar velocities. We model $P^s_{{rm HI}}(k_{perp},k_{parallel})$ assuming that it is the product of $P_{{rm HI}}(k)=b^2 P(k)$ with a Kaiser enhancement term and a Finger of God (FoG) damping which has $sigma_p$ the pair velocity dispersion as a free parameter. Considering several possibilities for the bias and the damping profile, we find that the models with a scale dependent bias and a Lorentzian damping profile best fit the simulated $P^s_{{rm HI}}(k_{perp},k_{parallel})$ over the entire range $1 le z le 6$. The best fit value of $sigma_p$ falls approximately as $(1+z)^{-m}$ with $m=2$ and $1.2$ respectively for the two different prescriptions. The model predictions are consistent with the simulations for $k < 0.3 , {rm Mpc}^{-1}$ over the entire $z$ range for the monopole $P^s_0(k)$, and at $z le 3$ for the quadrupole $P^s_2(k)$. At $z ge 4$ the models underpredict $P^s_2(k)$ at large $k$, and the fit is restricted to $k < 0.15 , {rm Mpc}^{-1}$.

قيم البحث

اقرأ أيضاً

146 - Debanjan Sarkar 2019
Measurements of the post-reionization 21-cm bispectrum $B_{{rm HI}}(mathbf{k_1},mathbf{k_2},mathbf{k_3})$ using various upcoming intensity mapping experiments hold the potential for determining the cosmological parameters at a high level of precision . In this paper we have estimated the 21-cm bispectrum in the $z$ range $1 le z le 6$ using semi-numerical simulations of the neutral hydrogen (${rm HI}$) distribution. We determine the $k$ and $z$ range where the 21-cm bispectrum can be adequately modelled using the predictions of second order perturbation theory, and we use this to predict the redshift evolution of the linear and quadratic ${rm HI}$ bias parameters $b_1$ and $b_2$ respectively. The $b_1$ values are found to decreases nearly linearly with decreasing $z$, and are in good agreement with earlier predictions obtained by modelling the 21-cm power spectrum $P_{{rm HI}}(k)$. The $b_2$ values fall sharply with decreasing $z$, becomes zero at $z sim 3$ and attains a nearly constant value $b_2 approx - 0.36$ at $z<2$. We provide polynomial fitting formulas for $b_1$ and $b_2$ as functions of $z$. The modelling presented here is expected to be useful in future efforts to determine cosmological parameters and constrain primordial non-Gaussianity using the 21-cm bispectrum.
A proposed method for dealing with foreground emission in upcoming 21-cm observations from the epoch of reionization is to limit observations to an uncontaminated window in Fourier space. Foreground emission can be avoided in this way, since it is li mited to a wedge-shaped region in $k_{parallel}, k_{perp}$ space. However, the power spectrum is anisotropic owing to redshift-space distortions from peculiar velocities. Consequently, the 21-cm power spectrum measured in the foreground avoidance window---which samples only a limited range of angles close to the line-of-sight direction---differs from the full spherically-averaged power spectrum which requires an average over emph{all} angles. In this paper, we calculate the magnitude of this wedge bias for the first time. We find that the bias is strongest at high redshifts, where measurements using foreground avoidance will over-estimate the power spectrum by around 100 per cent, possibly obscuring the distinctive rise and fall signature that is anticipated for the spherically-averaged 21-cm power spectrum. In the later stages of reionization, the bias becomes negative, and smaller in magnitude ($lesssim 20$ per cent). The effect shows only a weak dependence on spatial scale and reionization topology.
361 - Kanan K. Datta 2011
Observations of redshifted 21-cm radiation from neutral hydrogen during the epoch of reionization (EoR) are considered to constitute the most promising tool to probe that epoch. One of the major goals of the first generation of low frequency radio te lescopes is to measure the 3D 21-cm power spectrum. However, the 21-cm signal could evolve substantially along the line of sight (LOS) direction of an observed 3D volume, since the received signal from different planes transverse to the LOS originated from different look-back times and could therefore be statistically different. Using numerical simulations we investigate this so-called light cone effect on the spherically averaged 3D 21-cm power spectrum. For this version of the power spectrum, we find that the effect mostly `averages out and observe a smaller change in the power spectrum compared to the amount of evolution in the mean 21-cm signal and its rms variations along the LOS direction. Nevertheless, changes up to 50% at large scales are possible. In general the power is enhanced/suppressed at large/small scales when the effect is included. The cross-over mode below/above which the power is enhanced/suppressed moves toward larger scales as reionization proceeds. When considering the 3D power spectrum we find it to be anisotropic at the late stages of reionization and on large scales. The effect is dominated by the evolution of the ionized fraction of hydrogen during reionization and including peculiar velocities hardly changes these conclusions. We present simple analytical models which explain qualitatively all the features we see in the simulations.
The high-redshift 21-cm signal of neutral hydrogen is expected to be observed within the next decade and will reveal epochs of cosmic evolution that have been previously inaccessible. Due to the lack of observations, many of the astrophysical process es that took place at early times are poorly constrained. In recent work we explored the astrophysical parameter space and the resulting large variety of possible global (sky-averaged) 21-cm signals. Here we extend our analysis to the fluctuations in the 21-cm signal, accounting for those introduced by density and velocity, Ly$alpha$ radiation, X-ray heating, and ionization. While the radiation sources are usually highlighted, we find that in many cases the density fluctuations play a significant role at intermediate redshifts. Using both the power spectrum and its slope, we show that properties of high-redshift sources can be extracted from the observable features of the fluctuation pattern. For instance, the peak amplitude of ionization fluctuations can be used to estimate whether heating occurred early or late and, in the early case, to also deduce the cosmic mean ionized fraction at that time. The slope of the power spectrum has a more universal redshift evolution than the power spectrum itself and can thus be used more easily as a tracer of high-redshift astrophysics. Its peaks can be used, for example, to estimate the redshift of the Ly$alpha$ coupling transition and the redshift of the heating transition (and the mean gas temperature at that time). We also show that a tight correlation is predicted between features of the power spectrum and of the global signal, potentially yielding important consistency checks.
The observed 21-cm signal from the epoch of reionization will be distorted along the line-of-sight by the peculiar velocities of matter particles. These redshift-space distortions will affect the contrast in the signal and will also make it anisotrop ic. This anisotropy contains information about the cross-correlation between the matter density field and the neutral hydrogen field, and could thus potentially be used to extract information about the sources of reionization. In this paper, we study a collection of simulated reionization scenarios assuming different models for the sources of reionization. We show that the 21-cm anisotropy is best measured by the quadrupole moment of the power spectrum. We find that, unless the properties of the reionization sources are extreme in some way, the quadrupole moment evolves very predictably as a function of global neutral fraction. This predictability implies that redshift-space distortions are not a very sensitive tool for distinguishing between reionization sources. However, the quadrupole moment can be used as a model-independent probe for constraining the reionization history. We show that such measurements can be done to some extent by first-generation instruments such as LOFAR, while the SKA should be able to measure the reionization history using the quadrupole moment of the power spectrum to great accuracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا