ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling the post-reionization neutral hydrogen (${rm HI}$) 21-cm bispectrum

147   0   0.0 ( 0 )
 نشر من قبل Debanjan Sarkar
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Debanjan Sarkar




اسأل ChatGPT حول البحث

Measurements of the post-reionization 21-cm bispectrum $B_{{rm HI}}(mathbf{k_1},mathbf{k_2},mathbf{k_3})$ using various upcoming intensity mapping experiments hold the potential for determining the cosmological parameters at a high level of precision. In this paper we have estimated the 21-cm bispectrum in the $z$ range $1 le z le 6$ using semi-numerical simulations of the neutral hydrogen (${rm HI}$) distribution. We determine the $k$ and $z$ range where the 21-cm bispectrum can be adequately modelled using the predictions of second order perturbation theory, and we use this to predict the redshift evolution of the linear and quadratic ${rm HI}$ bias parameters $b_1$ and $b_2$ respectively. The $b_1$ values are found to decreases nearly linearly with decreasing $z$, and are in good agreement with earlier predictions obtained by modelling the 21-cm power spectrum $P_{{rm HI}}(k)$. The $b_2$ values fall sharply with decreasing $z$, becomes zero at $z sim 3$ and attains a nearly constant value $b_2 approx - 0.36$ at $z<2$. We provide polynomial fitting formulas for $b_1$ and $b_2$ as functions of $z$. The modelling presented here is expected to be useful in future efforts to determine cosmological parameters and constrain primordial non-Gaussianity using the 21-cm bispectrum.

قيم البحث

اقرأ أيضاً

220 - Debanjan Sarkar 2016
Observations of the neutral Hydrogen (HI ) 21-cm signal hold the potential of allowing us to map out the cosmological large scale structures (LSS) across the entire post-reionization era ($z leq 6$). Several experiments are planned to map the LSS ove r a large range of redshifts and angular scales, many of these targeting the Baryon Acoustic Oscillations. It is important to model the HI distribution in order to correctly predict the expected signal, and more so to correctly interpret the results after the signal is detected. In this paper we have carried out semi-numerical simulations to model the HI distribution and study the HI power spectrum $P_{HI}(k,z)$ across the redshift range $1 le z le 6$. We have modelled the HI bias as a complex quantity $tilde{b}(k,z)$ whose modulus squared $b^2(k,z)$ relates $P_{HI}(k,z)$ to the matter power spectrum $P(k,z)$, and whose real part $b_r(k,z)$ quantifies the cross-correlation between the HI and the matter distribution. We study the $z$ and $k$ dependence of the bias, and present polynomial fits which can be used to predict the bias across $0 le z le6$ and $0.01 le k le 10 , {rm Mpc}^{-1}$. We also present results for the stochasticity $r=b_r/b$ which is important for cross-correlation studies.
The post-reionization ${rm HI}$ 21-cm signal is an excellent candidate for precision cosmology, this however requires accurate modelling of the expected signal. Sarkar et al. (2016) have simulated the real space ${rm HI}$ 21-cm signal, and have model led the ${rm HI}$ power spectrum as $P_{{rm HI}}(k)=b^2 P(k)$ where $P(k)$ is the dark matter power spectrum and $b(k)$ is a (possibly complex) scale dependent bias for which fitting formulas have been provided. This paper extends these simulations to incorporate redshift space distortion and predict the expected redshift space ${rm HI}$ 21-cm power spectrum $P^s_{{rm HI}}(k_{perp},k_{parallel})$ using two different prescriptions for the ${rm HI}$ distributions and peculiar velocities. We model $P^s_{{rm HI}}(k_{perp},k_{parallel})$ assuming that it is the product of $P_{{rm HI}}(k)=b^2 P(k)$ with a Kaiser enhancement term and a Finger of God (FoG) damping which has $sigma_p$ the pair velocity dispersion as a free parameter. Considering several possibilities for the bias and the damping profile, we find that the models with a scale dependent bias and a Lorentzian damping profile best fit the simulated $P^s_{{rm HI}}(k_{perp},k_{parallel})$ over the entire range $1 le z le 6$. The best fit value of $sigma_p$ falls approximately as $(1+z)^{-m}$ with $m=2$ and $1.2$ respectively for the two different prescriptions. The model predictions are consistent with the simulations for $k < 0.3 , {rm Mpc}^{-1}$ over the entire $z$ range for the monopole $P^s_0(k)$, and at $z le 3$ for the quadrupole $P^s_2(k)$. At $z ge 4$ the models underpredict $P^s_2(k)$ at large $k$, and the fit is restricted to $k < 0.15 , {rm Mpc}^{-1}$.
The high-redshift 21 cm signal from the Epoch of Reionization (EoR) is a promising observational probe of the early universe. Current- and next-generation radio interferometers such as the Hydrogen Epoch of Reionization Array (HERA) and Square Kilome tre Array (SKA) are projected to measure the 21 cm auto power spectrum from the EoR. Another observational signal of this era is the kinetic Sunyaev-Zeldovich (kSZ) signal in the cosmic microwave background (CMB), which will be observed by the upcoming Simons Observatory (SO) and CMB-S4 experiments. The 21 cm signal and the contribution to the kSZ from the EoR are expected to be anti-correlated, the former coming from regions of neutral gas in the intergalactic medium and the latter coming from ionized regions. However, the naive cross-correlation between the kSZ and 21 cm maps suffers from a cancellation that occurs because ionized regions are equally likely to be moving toward or away from the observer and so there is no net correlation with the 21 cm signal. We present here an investigation of the 21 cm-kSZ-kSZ bispectrum, which should not suffer the same cancellation as the simple two-point cross-correlation. We show that there is a significant and non-vanishing signal that is sensitive to the reionization history, suggesting the statistic may be used to confirm or infer the ionization fraction as a function of redshift. In the absence of foreground contamination, we forecast that this signal is detectable at high statistical significance with HERA and SO. The bispectrum we study suffers from the fact that the kSZ signal is sensitive only to Fourier modes with long-wavelength line-of-sight components, which are generally lost in the 21 cm data sets owing to foreground contamination. We discuss possible strategies for alleviating this contamination, including an alternative four-point statistic that may help circumvent this issue.
The relative velocity between baryons and dark matter in the early Universe can suppress the formation of small-scale baryonic structure and leave an imprint on the baryon acoustic oscillation (BAO) scale at low redshifts after reionization. This str eaming velocity affects the post-reionization gas distribution by directly reducing the abundance of pre-existing mini-halos ($lesssim 10^7 M_{bigodot}$) that could be destroyed by reionization and indirectly modulating reionization history via photoionization within these mini-halos. In this work, we investigate the effect of streaming velocity on the BAO feature in HI 21 cm intensity mapping after reionization, with a focus on redshifts $3.5lesssim zlesssim5.5$. We build a spatially modulated halo model that includes the dependence of the filtering mass on the local reionization redshift and thermal history of the intergalactic gas. In our fiducial model, we find isotropic streaming velocity bias coefficients $b_v$ ranging from $-0.0033$ at $z=3.5$ to $-0.0248$ at $z=5.5$, which indicates that the BAO scale is stretched (i.e., the peaks shift to lower $k$). In particular, streaming velocity shifts the transverse BAO scale between 0.087% ($z=3.5$) and 0.37% ($z=5.5$) and shifts the radial BAO scale between 0.13% ($z=3.5$) and 0.52% ($z=5.5$). These shifts exceed the projected error bars from the more ambitious proposed hemispherical-scale surveys in HI (0.13% at $1sigma$ per $Delta z = 0.5$ bin).
Studying the cosmic dawn and the epoch of reionization through the redshifted 21 cm line are among the major science goals of the SKA1. Their significance lies in the fact that they are closely related to the very first stars in the universe. Interpr eting the upcoming data would require detailed modelling of the relevant physical processes. In this article, we focus on the theoretical models of reionization that have been worked out by various groups working in India with the upcoming SKA in mind. These models include purely analytical and semi-numerical calculations as well as fully numerical radiative transfer simulations. The predictions of the 21 cm signal from these models would be useful in constraining the properties of the early galaxies using the SKA data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا