ﻻ يوجد ملخص باللغة العربية
Violent nuclear collisions are open systems which require a non-equilibrium description when the process should be followed from the first instants. The heated system produced in the collision, can no more be treated within an independent-particle picture and additional correlations should be taken into account: they rely to in-medium dissipation and phase-space fluctuations. Their interplay with the one-body collective behaviour activates the transport dynamics: large-amplitude fluctuations and bifurcations in a variety of mechanisms appear, from fusion to neck formation till eventually freezing out the system into several intermediate-mass clusters. Starting from fundamental concepts tested on nuclear matter, a microscopic description is built up to address violent processes occurring in heavy-ion collisions at Fermi energies and in spallation reactions, and it is applied to experimental observables.
The alpha-rich freezeout from equilibrium occurs during the core-collapse explosion of a massive star when the supernova shock wave passes through the Si-rich shell of the star. The nuclei are heated to high temperature and broken down into nucleons
The methods used in the evaluation of the neutrino-nucleus cross section are reviewed. Results are shown for a variety of targets of practical importance. Many of the described reactions are accessible in future experiments with neutrino sources from
Bremsstrahlung emission of photons during nuclear reactions inside dense stellar medium is investigated in the paper. For that, a new model of nucleus is developed, where nuclear forces combine nucleons as bound system in dependence on deep location
Nucleosynthesis is a complex process in astro-nuclear evolution. In this work, we construct a directed multi-layer nuclear reaction network using the substrate-product method from a thermonuclear reaction database, JINA REACLIB. The network contains
A three parameter scaling relationship between isotopic distributions for elements with Z$leq 8$ has been observed that allows a simple description of the dependence of such distributions on the overall isospin of the system. This scaling law (termed