ﻻ يوجد ملخص باللغة العربية
Nucleosynthesis is a complex process in astro-nuclear evolution. In this work, we construct a directed multi-layer nuclear reaction network using the substrate-product method from a thermonuclear reaction database, JINA REACLIB. The network contains four layers, namely $n$-, $p$-, $h$- and $r$, corresponding to the reaction types involved in neutrons, protons, $^4$He and the remainder, respectively. The degree values (i.e. numbers of reactions) for three layers of n-, p- and h- have a significant correlation with one another, and their topological structures exhibit a similar regularity. However, the $r$-layer has a more complex topological structure than others and has less correlation with the other three layers. A software package named `mfinder is employed to analyze the motif structure of the nuclear reaction network. We thus identify the most frequent reaction patterns of interconnections occurring among different nuclides. This work provides a novel approach to study the nuclear reaction network prevailing in the astrophysical context.
The methods used in the evaluation of the neutrino-nucleus cross section are reviewed. Results are shown for a variety of targets of practical importance. Many of the described reactions are accessible in future experiments with neutrino sources from
The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly highe
The neutron and proton drip lines represent the limits of the nuclear landscape. While the proton drip line is measured experimentally up to rather high $Z$-values, the location of the neutron drip line for absolute majority of elements is based on t
The alpha-rich freezeout from equilibrium occurs during the core-collapse explosion of a massive star when the supernova shock wave passes through the Si-rich shell of the star. The nuclei are heated to high temperature and broken down into nucleons
We demonstrate, within symmetry unrestricted time-dependent density functional theory, the existence of new effects in low-energy nuclear reactions which originate from superfluidity. The dynamics of the pairing field induces solitonic excitations in