ترغب بنشر مسار تعليمي؟ اضغط هنا

Bremsstrahlung emission from nuclear reactions in compact stars

64   0   0.0 ( 0 )
 نشر من قبل Sergei Maydanyuk
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bremsstrahlung emission of photons during nuclear reactions inside dense stellar medium is investigated in the paper. For that, a new model of nucleus is developed, where nuclear forces combine nucleons as bound system in dependence on deep location inside compact star. A polytropic model of stars at index $n=3$ with densities characterized from white dwarf to neutron star is used. Bremsstrahlung formalism and calculations are well tested on existed experimental information for scattering of protons of light nuclei in Earth. We find the following. (1) In neutron stars a phenomenon of dissociation of nucleus is observed --- its disintegration on individual nucleons, starting from some critical distance between this nucleus and center of star with high density. We do not observe such a phenomenon in white dwarfs. (2) In the white dwarfs, influence of stellar medium imperceptibly affects on bremsstrahlung photons. Also, we have accurate description of bremsstrahlung photons in nuclear reactions in Sun. (3) For neutron stars, influence of stellar medium is essentially more intensive and it crucially changes the bremsstrahlung spectrum. The most intensive emission is from bowel of the star, while the weakest emission is from periphery.



قيم البحث

اقرأ أيضاً

The equation of state (EoS) of hot and dense matter is a fundamental input to describe static and dynamical properties of neutron stars, core-collapse supernovae and binary compact-star mergers. We review the current status of the EoS for compact obj ects, that have been studied with both ab-initio many-body approaches and phenomenological models. We limit ourselves to the description of EoSs with purely nucleonic degrees of freedom, disregarding the appearance of strange baryonic matter and/or quark matter. We compare the theoretical predictions with different data coming from both nuclear physics experiments and astrophysical observations. Combining the complementary information thus obtained greatly enriches our insights into the dense nuclear matter properties. Current challenges in the description of the EoS are also discussed, mainly focusing on the model dependence of the constraints extracted from either experimental or observational data (specifically, concerning the symmetry energy), the lack of a consistent and rigorous many-body treatment at zero and finite temperature of the matter encountered in compact stars (e.g. problem of cluster formation and extension of the EoS to very high temperatures), the role of nucleonic three-body forces, and the dependence of the direct URCA processes on the EoS.
This volume contains most of the links to the presentations delivered at this international workshop. This meeting was the second in the series following the previous I Encuentro Iberico de Compstar, held at the University of Coimbra, Portugal in 201 0. The main purpose of this meeting was to strengthen the scientific collaboration between the participants of the Iberian and the rest of the southern European branches of the European Nuclear Astrophysics network, formerly, COMPSTAR. This ESF (European Science Foundation) supported network has been crucial in helping to make a broader audience for the the most interesting and relevant research lines being developed currently in Nuclear Astrophysics, especially related to the physics of neutron stars. The program of the meeting was tailored to theoretical descriptions of the physics of neutron stars although some input from experimental observers and other condensed matter and optics areas of interest was also included.
119 - Goran Faldt , Ulla Tengblad 2012
Pion-nucleus bremsstrahlung offers a possibility of measuring the structure functions of pion-Compton scattering from a study of the small-momentum-transfer region where the bremsstrahlung reaction is dominated by the single-photon-exchange mechanism . The corresponding cross-section distribution is characterized by a sharp peak at small momentum transfers. But there is also a hadronic contribution which is smooth and constitutes an undesired background. In this communication the modification of the single-photon exchange amplitude by multiple-Coulomb scattering is investigated as well as the Coulomb-nuclear interference term.
Perturbing fluids of neutrons and protons (nuclear matter) may lead, as the most catastrophic effect, to the rearrangement of the fluid into clusters of nucleons. A similar process may occur in a single atomic nucleus undergoing a violent perturbatio n, like in heavy-ion collisions tracked in particle accelerators at around 30 to 50 MeV per nucleon: in this conditions, after the initial collision shock, the nucleus expands and then clusterises into several smaller nuclear fragments. Microscopically, when violent perturbation are applied to nuclear matter, a process of clusterisation arises from the combination of several fluctuation modes of large-amplitude where neutrons and protons may oscillate in phase or out of phase. The imposed perturbation leads to conditions of instability, the wavelengths which are the most amplified have sizes comparable to small atomic nuclei. We found that these conditions, explored in heavy-ion collisions, correspond to the splitting of a nucleus into fragments ranging from Oxygen to Neon in a time interval shorter than one zeptosecond (10$^{-21}$s). From the out-of-phase oscillations of neutrons and protons another property arises, the smaller fragments belonging to a more volatile phase get more neutron enriched: in the heavy-ion collision case this process, called distillation, reflects in the isotopic distributions of the fragments. The resulting dynamical description of heavy-ion collisions is an improvement with respect to more usual statistical approaches, based on the equilibrium assumption. It allows in fact to characterise also the very fast early stages of the collision process which are out of equilibrium. Such dynamical description is the core of the Boltzmann-Langevin One Body (BLOB) model, which unifies in a common description fluctuations in nuclear matter and the disintegration of nuclei into nuclear fragments.
The alpha-rich freezeout from equilibrium occurs during the core-collapse explosion of a massive star when the supernova shock wave passes through the Si-rich shell of the star. The nuclei are heated to high temperature and broken down into nucleons and alpha particles. These subsequently reassemble as the material expands and cools, thereby producing new heavy nuclei, including a number of important supernova observables. In this paper we introduce two web-based applications. The first displays the results of a reaction-rate sensitivity study of alpha-rich freezeout yields. The second allows the interested reader to run paramaterized explosive silicon burning calculations in which the user inputs his own parameters. These tools are intended to aid in the identification of nuclear reaction rates important for experimental study. We then analyze several iron-group isotopes (59Ni, 57Co, 56Co, and 55Fe) in terms of their roles as observables and examine the reaction rates that are important in their production.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا