ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards an automatic wind speed and direction profiler for Wide Field AO systems

119   0   0.0 ( 0 )
 نشر من قبل Elena Masciadri Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Wide Field Adaptive Optics (WFAO) systems are among the most sophisticated AO systems available today on large telescopes. The knowledge of the vertical spatio-temporal distribution of the wind speed (WS) and direction (WD) are fundamental to optimize the performance of such systems. Previous studies already proved that the Gemini Multi-Conjugated AO system (GeMS) is able to retrieve measurements of the WS and WD stratification using the SLODAR technique and to store measurements in the telemetry data. In order to assess the reliability of these estimates and of the SLODAR technique applied to such a kind of complex AO systems, in this study we compared WS and WD retrieved from GeMS with those obtained with the atmospherical model Meso-Nh on a rich statistical sample of nights. It has been previously proved that, the latter technique, provided an excellent agreement with a large sample of radiosoundings both, in statistical terms and on individual flights. It can be considered, therefore, as an independent reference. The excellent agreement between GeMS measurements and the model that we find in this study, proves the robustness of the SLODAR approach. To by-pass the complex procedures necessary to achieve automatic measurements of the wind with GeMS, we propose a simple automatic method to monitor nightly WS and WD using the Meso-Nh model estimates. Such a method can be applied to whatever present or new generation facilities supported by WFAO systems. The interest of this study is, therefore, well beyond the optimization of GeMS performance.



قيم البحث

اقرأ أيضاً

95 - E. Masciadri 2016
Wide Field Adaptive Optics (WFAO) systems represent the more sophisticated AO systems available today at large telescopes. A critical aspect for these WFAO systems in order to deliver an optimised performance is the knowledge of the vertical spatiote mporal distribution of the CN2 and the wind speed. Previous studies (Cortes et al., 2012) already proved the ability of GeMS (the Gemini Multi-Conjugated AO system) in retrieving CN2 and wind vertical stratification using the telemetry data. To assess the reliability of the GeMS wind speed estimates a preliminary study (Neichel et al., 2014) compared wind speed retrieved from GeMS with that obtained with the atmospherical model Meso-Nh on a small sample of nights providing promising results. The latter technique is very reliable for the wind speed vertical stratification. The model outputs gave, indeed, an excellent agreement with a large sample of radiosoundings (~ 50) both in statistical terms and on individual flights (Masciadri et al., 2013). Such a tool can therefore be used as a valuable reference in this exercise of cross calibrating GeMS on-sky wind estimates with model predictions. In this contribution we achieved a two-fold results: (1) we extended analysis on a much richer statistical sample (~ 43 nights), we confirmed the preliminary results and we found an even better correlation between GeMS observations and the atmospherical model with basically no cases of not-negligible uncertainties; (2) we evaluate the possibility to use, as an input for GeMS, the Meso-Nh estimates of the wind speed stratification in an operational configuration. Under this configuration these estimates can be provided many hours in advanced with respect to the observations and with a very high temporal frequency (order of 2 minutes or less).
Sky-coverage in laser-assisted AO observations largely depends on the systems capability to guide on the faintest natural guide-stars possible. Here we give an up-to-date status of our natural guide-star processing tailored to the European-ELTs visib le and near-infrared (0.47 to 2.45 {mu}m) integral field spectrograph - Harmoni. We tour the processing of both the isoplanatic and anisoplanatic tilt modes using the spatio-angular approach whereby the wave-front is estimated directly in the pupil plane avoiding a cumbersome explicit layered estimation on the 35-layer profiles were currently using. Taking the case of Harmoni, we cover the choice of wave-front sensors, the number and field location of guide-stars, the optimised algorithms to beat down angular anisoplanatism and the performance obtained with different temporal controllers under split high-order/low-order tomography or joint tomography. We consider both atmospheric and far greater telescope wind buffeting disturbances. In addition we provide the sky-coverage estimates thus obtained.
117 - Andres Guesalaga 2014
We use spatio-temporal cross-correlations of slopes from five Shack-Hartmann wavefront sensors to analyse the temporal evolution of the atmospheric turbulence layers at different altitudes. The focus is on the verification of the frozen flow assumpti on. The data is coming from the Gemini South Multi-Conjugate Adaptive Optics System (GeMS). First, the Cn2 and wind profiling technique is presented. This method provides useful information for the AO system operation such as the number of existing turbulence layers, their associated velocities, altitudes and strengths and also a mechanism to estimate the dome seeing contribution to the total turbulence. Next, by identifying the turbulence layers we show that it is possible to estimate the rate of decay in time of the correlation among turbulence measurements. We reduce on-sky data obtained during 2011, 2012 and 2013 campaigns and the first results suggest that the rate of temporal de-correlation can be expressed in terms of a single parameter that is independent of the layer altitude and turbulence strength. Finally, we show that the decay rate of the frozen-flow contribution increases linearly with the layer speed. The observed evolution of the decay rate confirms the potential interest of the predictive control for wide-field AO systems.
Accurate short-term wind speed forecasting is needed for the rapid development and efficient operation of wind energy resources. This is, however, a very challenging problem. Although on the large scale, the wind speed is related to atmospheric press ure, temperature, and other meteorological variables, no improvement in forecasting accuracy was found by incorporating air pressure and temperature directly into an advanced space-time statistical forecasting model, the trigonometric direction diurnal (TDD) model. This paper proposes to incorporate the geostrophic wind as a new predictor in the TDD model. The geostrophic wind captures the physical relationship between wind and pressure through the observed approximate balance between the pressure gradient force and the Coriolis acceleration due to the Earths rotation. Based on our numerical experiments with data from West Texas, our new method produces more accurate forecasts than does the TDD model using air pressure and temperature for 1- to 6-hour-ahead forecasts based on three different evaluation criteria. Furthermore, forecasting errors can be further reduced by using moving average hourly wind speeds to fit the diurnal pattern. For example, our new method obtains between 13.9% and 22.4% overall mean absolute error reduction relative to persistence in 2-hour-ahead forecasts, and between 5.3% and 8.2% reduction relative to the best previous space-time methods in this setting.
106 - P. Verev{s} , J. Toth , R. Jedicke 2014
We propose a low-cost robotic optical survey aimed at $1-300$ m Near Earth Objects (NEO) based on four state-of-the-art telescopes having extremely wide field of view. The small Near-Earth Asteroids (NEA) represent a potential risk but also easily ac cessible space resources for future robotic or human space in-situ exploration, or commercial activities. The survey system will be optimized for the detection of fast moving - trailed - asteroids, space debris and will provide real-time alert notifications. The expected cost of the system including 1-year development and 2-year operation is 1,000,000 EUR. The successful demonstration of the system will promote cost-efficient ADAM-WFS (Automatic Detection of Asteroids and Meteoroids - A Wide Field Survey) systems to be built around the world.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا