ترغب بنشر مسار تعليمي؟ اضغط هنا

Automatic Detection of Asteroids and Meteoroids - A Wide Field Survey

64   0   0.0 ( 0 )
 نشر من قبل Peter Vere\\v{s}
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a low-cost robotic optical survey aimed at $1-300$ m Near Earth Objects (NEO) based on four state-of-the-art telescopes having extremely wide field of view. The small Near-Earth Asteroids (NEA) represent a potential risk but also easily accessible space resources for future robotic or human space in-situ exploration, or commercial activities. The survey system will be optimized for the detection of fast moving - trailed - asteroids, space debris and will provide real-time alert notifications. The expected cost of the system including 1-year development and 2-year operation is 1,000,000 EUR. The successful demonstration of the system will promote cost-efficient ADAM-WFS (Automatic Detection of Asteroids and Meteoroids - A Wide Field Survey) systems to be built around the world.

قيم البحث

اقرأ أيضاً

The survey of the nearby space and continuous monitoring of the Near Earth Objects (NEOs) and especially Near Earth Asteroids (NEAs) are essential for the future of our planet and should represent a priority for our solar system research and nearby s pace exploration. More computing power and sophisticated digital tracking algorithms are needed to cope with the larger astronomy imaging cameras dedicated for survey telescopes. The paper presents the NEARBY platform that aims to experiment new algorithms for automatic image reduction, detection and validation of moving objects in astronomical surveys, specifically NEAs. The NEARBY platform has been developed and experimented through a collaborative research work between the Technical University of Cluj-Napoca (UTCN) and the University of Craiova, Romania, using observing infrastructure of the Instituto de Astrofisica de Canarias (IAC) and Isaac Newton Group (ING), La Palma, Spain. The NEARBY platform has been developed and deployed on the UTCNs cloud infrastructure and the acquired images are processed remotely by the astronomers who transfer it from ING through the web interface of the NEARBY platform. The paper analyzes and highlights the main aspects of the NEARBY platform development, and the results and conclusions on the EURONEAR surveys.
222 - F. Colas , B. Zanda , S. Bouley 2020
Context: Until recently, camera networks designed for monitoring fireballs worldwide were not fully automated, implying that in case of a meteorite fall, the recovery campaign was rarely immediate. This was an important limiting factor as the most fr agile - hence precious - meteorites must be recovered rapidly to avoid their alteration. Aims: The Fireball Recovery and InterPlanetary Observation Network (FRIPON) scientific project was designed to overcome this limitation. This network comprises a fully automated camera and radio network deployed over a significant fraction of western Europe and a small fraction of Canada. As of today, it consists of 150 cameras and 25 European radio receivers and covers an area of about 1.5 million square kilometers.
The overwhelming majority of objects visible to LSST lie within the Galactic Plane. Though many previous surveys have avoided this region for fear of stellar crowding, LSSTs spatial resolution combined with its state-of-the-art Difference Image Analy sis mean that it can conduct a high cadence survey of most of the Galaxy for the first time. Here we outline the many areas of science that would greatly benefit from an LSST survey that included the Galactic Plane, Magellanic Clouds and Bulge at a cadence of 2-3 d. Particular highlights include measuring the mass spectrum of black holes, and mapping the population of exoplanets in the Galaxy in relation to variations in star forming environments. But the same survey data will provide a goldmine for a wide range of science, and we explore possible survey strategies which maximize the scientific return for a number of fields including young stellar objects, cataclysmic variables and Neptune Trojans.
The Wide-Field InfraRed Space Telescope (WFIRST) will be capable of delivering precise astrometry for faint sources over the enormous field of view of its main camera, the Wide-Field Imager (WFI). This unprecedented combination will be transformative for the many scientific questions that require precise positions, distances, and velocities of stars. We describe the expectations for the astrometric precision of the WFIRST WFI in different scenarios, illustrate how a broad range of science cases will see significant advances with such data, and identify aspects of WFIRSTs design where small adjustments could greatly improve its power as an astrometric instrument.
Most meteorites are fragments from recent collisions experienced in the asteroid belt. In such a hyper-velocity collision, the smaller collision partner is destroyed, whereas a crater on the asteroid is formed or it is entirely disrupted, too. The pr esent size distribution of the asteroid belt suggests that an asteroid with 100 km radius is encountered $10^{14}$ times during the lifetime of the Solar System by objects larger than 10 cm in radius; the formed craters cover the surface of the asteroid about 100 times. We present a Monte Carlo code that takes into account the statistical bombardment of individual infinitesimally small surface elements, the subsequent compaction of the underlying material, the formation of a crater and a regolith layer. For the entire asteroid, 10,000 individual surface elements are calculated. We compare the ejected material from the calculated craters with the shock stage of meteorites with low petrologic type and find that these most likely stem from smaller parent bodies that do not possess a significant regolith layer. For larger objects, which accrete a regolith layer, a prediction of the thickness depending on the largest visible crater can be made. Additionally, we compare the crater distribution of an object initially 100 km in radius with the shape model of the asteroid (21) Lutetia, assuming it to be initially formed spherical with a radius that is equal to its longest present ellipsoid length. Here, we find the shapes of both objects to show resemblance to each other.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا