ترغب بنشر مسار تعليمي؟ اضغط هنا

Cn2 and wind profiler method to quantify the frozen flow decay using wide-field laser guide stars adaptive optics

127   0   0.0 ( 0 )
 نشر من قبل Benoit Neichel
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Andres Guesalaga




اسأل ChatGPT حول البحث

We use spatio-temporal cross-correlations of slopes from five Shack-Hartmann wavefront sensors to analyse the temporal evolution of the atmospheric turbulence layers at different altitudes. The focus is on the verification of the frozen flow assumption. The data is coming from the Gemini South Multi-Conjugate Adaptive Optics System (GeMS). First, the Cn2 and wind profiling technique is presented. This method provides useful information for the AO system operation such as the number of existing turbulence layers, their associated velocities, altitudes and strengths and also a mechanism to estimate the dome seeing contribution to the total turbulence. Next, by identifying the turbulence layers we show that it is possible to estimate the rate of decay in time of the correlation among turbulence measurements. We reduce on-sky data obtained during 2011, 2012 and 2013 campaigns and the first results suggest that the rate of temporal de-correlation can be expressed in terms of a single parameter that is independent of the layer altitude and turbulence strength. Finally, we show that the decay rate of the frozen-flow contribution increases linearly with the layer speed. The observed evolution of the decay rate confirms the potential interest of the predictive control for wide-field AO systems.



قيم البحث

اقرأ أيضاً

We describe results from the first astronomical adaptive optics system to use multiple laser guide stars, located at the 6.5-m MMT telescope in Arizona. Its initial operational mode, ground-layer adaptive optics (GLAO), provides uniform stellar wavef ront correction within the 2 arc minute diameter laser beacon constellation, reducing the stellar image widths by as much as 53%, from 0.70 to 0.33 arc seconds at lambda = 2.14 microns. GLAO is achieved by applying a correction to the telescopes adaptive secondary mirror that is an average of wavefront measurements from five laser beacons supplemented with image motion from a faint stellar source. Optimization of the adaptive optics system in subsequent commissioning runs will further improve correction performance where it is predicted to deliver 0.1 to 0.2 arc second resolution in the near-infrared during a majority of seeing conditions.
The Adaptive Optics Facility (AOF) project envisages transforming one of the VLT units into an adaptive telescope and providing its ESO (European Southern Observatory) second generation instruments with turbulence corrected wavefronts. For MUSE and H AWK-I this correction will be achieved through the GALACSI and GRAAL AO modules working in conjunction with a 1170 actuators Deformable Secondary Mirror (DSM) and the new Laser Guide Star Facility (4LGSF). Multiple wavefront sensors will enable GLAO and LTAO capabilities, whose performance can greatly benefit from a knowledge about the stratification of the turbulence in the atmosphere. This work, totally based on end-to-end simulations, describes the validation tests conducted on a Cn2 profiler adapted for the AOF specifications. Because an absolute profile calibration is strongly dependent on a reliable knowledge of turbulence parameters r0 and L0, the tests presented here refer only to normalized output profiles. Uncertainties in the input parameters inherent to the code are tested as well as the profiler response to different turbulence distributions. It adopts a correction for the unseen turbulence, critical for the GRAAL mode, and highlights the effects of masking out parts of the corrected wavefront on the results. Simulations of data with typical turbulence profiles from Paranal were input to the profiler, showing that it is possible to identify reliably the input features for all the AOF modes.
Astronomical adaptive optics systems are used to increase effective telescope resolution. However, they cannot be used to observe the whole sky since one or more natural guide stars of sufficient brightness must be found within the telescope field of view for the AO system to work. Even when laser guide stars are used, natural guide stars are still required to provide a constant position reference. Here, we introduce a technique to overcome this problem by using rotary unmanned aerial vehicles (UAVs) as a platform from which to produce artificial guide stars. We describe the concept, which relies on the UAV being able to measure its precise relative position. We investigate the adaptive optics performance improvements that can be achieved, which in the cases presented here can improve the Strehl ratio by a factor of at least 2 for a 8~m class telescope. We also discuss improvements to this technique, which is relevant to both astronomical and solar adaptive optics systems.
Adaptive optics (AO) is a key technology for ground-based optical and infrared astronomy, providing high angular resolution and sensitivity. AO systems employing laser guide stars (LGS) can achieve high sky coverage, but their performance is limited by LGS return flux. We examine the potential of two new approaches that might produce high-intensity atmospheric laser beacons. Amplified spontaneous emission could potentially boost the intensity of beacons produced by conventional resonant excitation of atomic or molecular species in the upper atmosphere. This requires the production of a population inversion in an electronic transition that is optically-thick to stimulated emission. Potential excitation mechanisms include continuous wave pumping, pulsed excitation and plasma generation. Alternatively, a high-power femtosecond pulsed laser could produce a white-light supercontinuum high in the atmosphere. The broad-band emission from such a source could also facilitate the sensing of the tilt component of atmospheric turbulence.
118 - G. Sivo , A. Turchi , E. Masciadri 2018
Wide Field Adaptive Optics (WFAO) systems are among the most sophisticated AO systems available today on large telescopes. The knowledge of the vertical spatio-temporal distribution of the wind speed (WS) and direction (WD) are fundamental to optimiz e the performance of such systems. Previous studies already proved that the Gemini Multi-Conjugated AO system (GeMS) is able to retrieve measurements of the WS and WD stratification using the SLODAR technique and to store measurements in the telemetry data. In order to assess the reliability of these estimates and of the SLODAR technique applied to such a kind of complex AO systems, in this study we compared WS and WD retrieved from GeMS with those obtained with the atmospherical model Meso-Nh on a rich statistical sample of nights. It has been previously proved that, the latter technique, provided an excellent agreement with a large sample of radiosoundings both, in statistical terms and on individual flights. It can be considered, therefore, as an independent reference. The excellent agreement between GeMS measurements and the model that we find in this study, proves the robustness of the SLODAR approach. To by-pass the complex procedures necessary to achieve automatic measurements of the wind with GeMS, we propose a simple automatic method to monitor nightly WS and WD using the Meso-Nh model estimates. Such a method can be applied to whatever present or new generation facilities supported by WFAO systems. The interest of this study is, therefore, well beyond the optimization of GeMS performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا