ﻻ يوجد ملخص باللغة العربية
Solid evidence of magnetic reconnection is rarely reported within sunspots, the darkest regions with the strongest magnetic fields and lowest temperatures in the solar atmosphere. Using the worlds largest solar telescope, the 1.6-meter Goode Solar Telescope, we detect prevalent reconnection through frequently occurring fine-scale jets in the H${alpha}$ line wings at light bridges, the bright lanes that may divide the dark sunspot core into multiple parts. Many jets have an inverted Y-shape, shown by models to be typical of reconnection in a unipolar field environment. Simultaneous spectral imaging data from the Interface Region Imaging Spectrograph show that the reconnection drives bidirectional flows up to 200~km~s$^{-1}$, and that the weakly ionized plasma is heated by at least an order of magnitude up to $sim$80,000 K. Such highly dynamic reconnection jets and efficient heating should be properly accounted for in future modeling efforts of sunspots. Our observations also reveal that the surge-like activity previously reported above light bridges in some chromospheric passbands such as the H${alpha}$ core has two components: the ever-present short surges likely to be related to the upward leakage of magnetoacoustic waves from the photosphere, and the occasionally occurring long and fast surges that are obviously caused by the intermittent reconnection jets.
We present unprecedented high-resolution TiO images and Fe I 1565 nm spectropolarimetric data of two light bridges taken by the 1.6-m Goode Solar Telescope at Big Bear Solar Observatory. In the first light bridge (LB1), we find striking knot-like dar
Penumbral filaments and light bridges are prominent structures inside sunspots and are important for understanding the nature of sunspot magnetic fields and magneto-convection underneath. We investigate an interesting event where several penumbral fi
One important feature of sunspots is the presence of light bridges. These structures are elongated and bright (as compared to the umbra) features that seem to be related to the formation and evolution of sunspots. In this work, we studied the long-te
Rapid and luminous flares of non-thermal radiation observed in blazars require an efficient mechanism of energy dissipation and particle acceleration in relativistic active galactic nuclei (AGN) jets. Particle acceleration in relativistic magnetic re
Traditionally, the strongest magnetic fields on the Sun have been measured in sunspot umbrae. More recently, however, much stronger fields have been measured at the ends of penumbral filaments carrying the Evershed and counter-Evershed flows. Superst