ﻻ يوجد ملخص باللغة العربية
Traditionally, the strongest magnetic fields on the Sun have been measured in sunspot umbrae. More recently, however, much stronger fields have been measured at the ends of penumbral filaments carrying the Evershed and counter-Evershed flows. Superstrong fields have also been reported within a light bridge separating two umbrae of opposite polarities. We aim to accurately determine the strengths of the strongest fields in a light bridge using an advanced inversion technique and to investigate their detailed structure. We analyze observations from the spectropolarimeter on board the Hinode spacecraft of the active region AR 11967. The thermodynamic and magnetic configurations are obtained by inverting the Stokes profiles using an inversion scheme that allows multiple height nodes. Both the traditional 1D inversion technique and the so-called 2D coupled
We analyse a sequence of high-resolution spectropolarimetric observations of a sunspot taken at the 1-m SST, to determine the nature of flux emergence in a light bridge and the processes related to its evolution in the photosphere and chromosphere. B
Light bridges are the most prominent manifestation of convection in sunspots. The brightest representatives are granular light bridges composed of features that appear to be similar to granules. An in-depth study of the convective motions, temperatur
One of the striking observations from the Parker Solar Probe (PSP) spacecraft is the prevalence in the inner heliosphere of large amplitude, Alfvenic magnetic field reversals termed switchbacks. These $delta B_R/B sim mathcal{O}(1$) fluctuations occu
The out-of-plane magnetic field, generated by fast magnetic reconnection, during collisionless, stressed $X$-point collapse, was studied with a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code, using both closed (flu
Slow magnetoacoustic waves are routinely observed in astrophysical plasma systems such as the solar corona. As a slow wave propagates through a plasma, it modifies the equilibrium quantities of density, temperature, and magnetic field. In the corona