ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark structures in sunspot light bridges

69   0   0.0 ( 0 )
 نشر من قبل Hui Tian
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present unprecedented high-resolution TiO images and Fe I 1565 nm spectropolarimetric data of two light bridges taken by the 1.6-m Goode Solar Telescope at Big Bear Solar Observatory. In the first light bridge (LB1), we find striking knot-like dark structures within the central dark lane. Many dark knots show migration away from the penumbra along the light bridge. The sizes, intensity depressions and apparent speeds of their proper motion along the light bridges of 33 dark knots identified from the TiO images are mainly in the ranges of 80$sim$200~km, 30%$sim$50%, and 0.3$sim$1.2~km~s$^{-1}$, respectively. In the second light bridge (LB2), a faint central dark lane and striking transverse intergranular lanes were observed. These intergranular lanes have sizes and intensity depressions comparable to those of the dark knots in LB1, and also migrate away from the penumbra at similar speeds. Our observations reveal that LB2 is made up of a chain of evolving convection cells, as indicated by patches of blue shift surrounded by narrow lanes of red shift. The central dark lane generally corresponds to blueshifts, supporting the previous suggestion of central dark lanes being the top parts of convection upflows. In contrast, the intergranular lanes are associated with redshifts and located at two sides of each convection cell. The magnetic fields are stronger in intergranular lanes than in the central dark lane. These results suggest that these intergranular lanes are manifestations of convergent convective downflows in the light bridge. We also provide evidence that the dark knots observed in LB1 may have a similar origin.

قيم البحث

اقرأ أيضاً

Solid evidence of magnetic reconnection is rarely reported within sunspots, the darkest regions with the strongest magnetic fields and lowest temperatures in the solar atmosphere. Using the worlds largest solar telescope, the 1.6-meter Goode Solar Te lescope, we detect prevalent reconnection through frequently occurring fine-scale jets in the H${alpha}$ line wings at light bridges, the bright lanes that may divide the dark sunspot core into multiple parts. Many jets have an inverted Y-shape, shown by models to be typical of reconnection in a unipolar field environment. Simultaneous spectral imaging data from the Interface Region Imaging Spectrograph show that the reconnection drives bidirectional flows up to 200~km~s$^{-1}$, and that the weakly ionized plasma is heated by at least an order of magnitude up to $sim$80,000 K. Such highly dynamic reconnection jets and efficient heating should be properly accounted for in future modeling efforts of sunspots. Our observations also reveal that the surge-like activity previously reported above light bridges in some chromospheric passbands such as the H${alpha}$ core has two components: the ever-present short surges likely to be related to the upward leakage of magnetoacoustic waves from the photosphere, and the occasionally occurring long and fast surges that are obviously caused by the intermittent reconnection jets.
One important feature of sunspots is the presence of light bridges. These structures are elongated and bright (as compared to the umbra) features that seem to be related to the formation and evolution of sunspots. In this work, we studied the long-te rm evolution and the stratification of different atmospheric parameters of three light bridges formed in the same host sunspot by different mechanisms. To accomplish this, we used data taken with the GREGOR Infrared Spectrograph installed at the GREGOR telescope. These data were inverted to infer the physical parameters of the atmosphere where the observed spectral profiles were formed of the three light bridges. We find that, in general, the behaviour of the three light bridges is typical of this kind of structure with the magnetic field strength, inclination, and temperature values between the values at the umbra and the penumbra. We also find that they are of a significantly non-magnetic character (particularly at the axis of the light bridges) as it is deduced from the filling factor. In addition, within the common behaviour of the physical properties of light bridges, we observe that each one exhibits a particular behaviour. Another interesting result is that the light bridge cools down, the magnetic field decreases, and the magnetic field lines get more inclined higher in the atmosphere. Finally, we studied the magnetic and non-magnetic line-of-sight velocities of the light bridges. The former shows that the magnetic component is at rest and, interestingly, its variation with optical depth shows a bi-modal behaviour. For the line-of-sight velocity of the non-magnetic component, we see that the core of the light bridge is at rest or with shallow upflows and clear downflows sinking through the edges.
112 - Andreas Lagg 2014
Light bridges are the most prominent manifestation of convection in sunspots. The brightest representatives are granular light bridges composed of features that appear to be similar to granules. An in-depth study of the convective motions, temperatur e stratification, and magnetic field vector in and around light bridge granules is presented with the aim of identifying similarities and differences to typical quiet-Sun granules. Spectropolarimetric data from the Hinode Solar Optical Telescope were analyzed using a spatially coupled inversion technique to retrieve the stratified atmospheric parameters of light bridge and quiet-Sun granules. Central hot upflows surrounded by cooler fast downflows reaching 10 km/s clearly establish the convective nature of the light bridge granules. The inner part of these granules in the near surface layers is field free and is covered by a cusp-like magnetic field configuration. We observe hints of field reversals at the location of the fast downflows. The quiet-Sun granules in the vicinity of the sunspot are covered by a low-lying canopy field extending radially outward from the spot. The similarities between quiet-Sun and light bridge granules point to the deep anchoring of granular light bridges in the underlying convection zone. The fast, supersonic downflows are most likely a result of a combination of invigorated convection in the light bridge granule due to radiative cooling into the neighboring umbra and the fact that we sample deeper layers, since the downflows are immediately adjacent to the slanted walls of the Wilson depression.
352 - Yuhu Miao , Libo Fu , Xian Du 2021
A light bridge is a magnetic intrusion into a sunspot, it interacts with the main magnetic field and excites a variety of dynamical processes. In the letter, we studied magnetic connectivity between a light bridge and coronal loops rooted at the suns pot. We used the data of the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory (SDO) to study the features of sunspots with light bridges. It is found that if a light bridge anchors at the umbra-penumbra boundary, the coronal loops could not be formed around the anchoring point. If the a light bridge become detached from the penumbra, the coronal loop starts to form again. The vector magnetogram provided by the Helioseismic Magnetic Imager onboard SDO shows that the anchoring region of a light bridge usually have an accompanying opposite minor-polarities. We conjugate that the magnetic field line could connect to these opposite polarities and form short-range magnetic loops, and therefore, coronal loops that extend to long-range could not be formed. A model of light bridge is proposed to explain the magnetic connectivity between a light bridge and the coronal loops. This model could explain many physical processes associated with light bridges.
We analyse a sequence of high-resolution spectropolarimetric observations of a sunspot taken at the 1-m SST, to determine the nature of flux emergence in a light bridge and the processes related to its evolution in the photosphere and chromosphere. B lueshifts of about 2 km/s are seen near the entrance of a granular light bridge on the limbward side of the spot. They lie next to a strongly redshifted patch that appeared 6 mins earlier. Both patches are seen for 25 mins until the end of the sequence. The blueshifts coincide with an elongated emerging granule, while the redshifts appear at the end of it. In the photosphere, the development of the blueshifts is accompanied by a simultaneous increase in field strength and inclination, with the field becoming nearly horizontal. In the redshifted patch, the magnetic field is equally horizontal but of opposite polarity. An intense brightening is seen in the Ca filtergrams over these features, 17 mins after they emerge in the photosphere. The brightening is due to emission in the blue wing of the Ca line, close to its knee. Non-LTE
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا