ﻻ يوجد ملخص باللغة العربية
We present optical and near-IR Integral Field Unit (IFU) and ALMA band 6 observations of the nearby dual Active Galactic Nuclei (AGN) Mrk 463. At a distance of 210 Mpc, and a nuclear separation of $sim$4 kpc, Mrk 463 is an excellent laboratory to study the gas dynamics, star formation processes and supermassive black hole (SMBH) accretion in a late-stage gas-rich major galaxy merger. The IFU observations reveal a complex morphology, including tidal tails, star-forming clumps, and emission line regions. The optical data, which map the full extent of the merger, show evidence for a biconical outflow and material outflowing at $>$600 km s$^{-1}$, both associated with the Mrk 463E nucleus, together with large scale gradients likely related to the ongoing galaxy merger. We further find an emission line region $sim$11 kpc south of Mrk 463E that is consistent with being photoionized by an AGN. Compared to the current AGN luminosity, the energy budget of the cloud implies a luminosity drop in Mrk 463E by a factor 3-20 over the last 40,000 years. The ALMA observations of $^{12}$CO(2-1) and adjacent 1mm continuum reveal the presence of $sim$10$^{9}$M$_odot$ in molecular gas in the system. The molecular gas shows velocity gradients of $sim$800 km/s and $sim$400 km/s around the Mrk 463E and 463W nuclei, respectively. We conclude that in this system the infall of $sim$100s $M_odot$/yr of molecular gas is in rough balance with the removal of ionized gas by a biconical outflow being fueled by a relatively small, $<$0.01% of accretion onto each SMBH.
We present Integral Field Spectroscopic (IFS) observations of the nearby ($zsim0.03$) dual Active Galactic Nuclei (AGN) Mrk 739, whose projected nuclear separation is $sim$3.4~kpc, obtained with the Multi Unit Spectroscopic Explorer (MUSE) at the Ver
We present a two-dimensional mapping of the gas flux distributions, as well as of the gas and stellar kinematics in the inner 220 pc of the Seyfert galaxy NGC 2110, using K-band integral field spectroscopy obtained with the Gemini NIFS at a spatial r
The QSO HE0450-2958 was brought to the front scene by the non-detection of its host galaxy and strong upper limits on the latters luminosity. The QSO is also a powerful infrared emitter, in gravitational interaction with a strongly distorted UltraLum
We present results of our analysis of NuSTAR data of the luminous infrared galaxy Mrk 266, which contains two nuclei, SW and NE, resolved in previous Chandra imaging. Combining with the Chandra data, we intepret the hard X-ray spectrum obtained from
A detailed multi-wavelength study of the properties of the triple-peaked AGN Mrk,622 showing different aspects of the nuclear emission region is presented. Radio, near- and mid-infrared, optical and X-ray data has been considered for the analysis. In