ترغب بنشر مسار تعليمي؟ اضغط هنا

A Compton-thick nucleus in the dual AGN of Mrk 266

102   0   0.0 ( 0 )
 نشر من قبل Kazushi Iwasawa
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results of our analysis of NuSTAR data of the luminous infrared galaxy Mrk 266, which contains two nuclei, SW and NE, resolved in previous Chandra imaging. Combining with the Chandra data, we intepret the hard X-ray spectrum obtained from a NuSTAR observation as resulting from steeply rising flux from a Compton-thick AGN in the SW nucleus which is very faint in the Chandra band, confirming the previous claim of Mazzarella et al. (2012). This hard X-ray component is dominated by reflection, and its intrinsic 2-10 keV luminosity is likely to be ~1e43 erg/s. Although it is bright in soft X-ray, only moderately absorbed NE nucleus has a 2-10 keV luminosity of 4e41 erg/s, placing it in the low-luminosity AGN class. These results have implications for understanding the detectability and duty cycles of emission from dual AGN in heavily obscured mergers.



قيم البحث

اقرأ أيضاً

Heavily obscured, Compton Thick (CT, NH>10^24 cm^-2) AGN may represent an important phase in AGN/galaxy co-evolution and are expected to provide a significant contribution to the cosmic X-ray background (CXB). Through direct X-ray spectra analysis, w e selected 39 heavily obscured AGN (NH>3x10^23 cm^-2) in the 2 deg^2 XMM-COSMOS survey. After selecting CT AGN based on the fit of a simple absorbed two power law model to the XMM data, the presence of CT AGN was confirmed in 80% of the sources using deeper Chandra data and more complex models. The final sample of CT AGN comprises 10 sources spanning a large range of redshift and luminosity. We collected the multi-wavelength information available for all these sources, in order to study the distribution of SMBH and host properties, such as BH mass (M_BH), Eddington ratio (lambda_Edd), stellar mass (M*), specific star formation rate (sSFR) in comparison with a sample of unobscured AGN. We find that highly obscured sources tend to have significantly smaller M_BH and higher lambda_edd with respect to unobscured ones, while a weaker evolution in M* is observed. The sSFR of highly obscured sources is consistent with the one observed in the main sequence of star forming galaxies, at all redshift. We also present optical spectra, spectral energy distribution (SED) and morphology for the sample of 10 CT AGN: all the available optical spectra are dominated by the stellar component of the host galaxy, and a highly obscured torus component is needed in the SED of the CT sources. Exploiting the high resolution Hubble-ACS images available, we conclude that these highly obscured sources have a significantly larger merger fraction with respect to other X-ray selected samples of AGN. Finally we discuss implications in the context of AGN/galaxy co-evolutionary models, and compare our results with the predictions of CXB synthesis models.
We present the analysis of simultaneous NuSTAR and XMM-Newton data of 8 Compton-thick (CT-) active galactic nuclei (AGN) candidates selected in the Swift-Burst Alert Telescope (BAT) 100 month survey. This work is part of an ongoing effort to find and characterize all CT-AGN in the local ($zleq$0.05) Universe. We used two physically motivated models, MYTorus and borus02, to characterize the sources in the sample, finding 5 of them to be confirmed CT-AGN. These results represent an increase of $sim19$% over the previous NuSTAR-confirmed, BAT-selected CT-AGN at $zleq0.05$, bringing the total number to 32. This corresponds to an observed fraction of $sim 8$% of all AGN within this volume-limited sample, although it increases to $20pm5$% when limiting the sample to $zleq0.01$. Out of a sample of 48 CT-AGN candidates, selected using BAT and soft (0.3$-$10 keV) X-ray data, only 24 are confirmed as CT-AGN with the addition of the NuSTAR data. This highlights the importance of NuSTAR when classifying local obscured AGN. We also note that most of the sources in our full sample of 48 Seyfert 2 galaxies with NuSTAR data have significantly different line-of-sight and average torus column densities, favouring a patchy torus scenario.
We present new NuSTAR and Chandra observations of NGC 3393, a galaxy reported to host the smallest separation dual AGN resolved in the X-rays. While past results suggested a 150 pc separation dual AGN, three times deeper Chandra imaging, combined wit h adaptive optics and radio imaging suggest a single, heavily obscured, radio-bright AGN. Using VLA and VLBA data, we find an AGN with a two-sided jet rather than a dual AGN and that the hard X-ray, UV, optical, NIR, and radio emission are all from a single point source with a radius <0.2. We find that the previously reported dual AGN is most likely a spurious detection resulting from the low number of X-ray counts (<160) at 6-7 keV and Gaussian smoothing of the data on scales much smaller than the PSF (0.25 vs. 0.80 FWHM). We show that statistical noise in a single Chandra PSF generates spurious dual peaks of the same separation (0.55$pm$0.07 vs. 0.6) and flux ratio (39$pm$9% vs. 32% of counts) as the purported dual AGN. With NuSTAR, we measure a Compton-thick source (NH=$2.2pm0.4times10^{24}$ cm$^{-2}$) with a large torus half-opening angle, {theta}=79 which we postulate results from feedback from strong radio jets. This AGN shows a 2-10 keV intrinsic to observed flux ratio of 150. Using simulations, we find that even the deepest Chandra observations would severely underestimate the intrinsic luminosity of NGC 3393 above z>0.2, but would detect an unobscured AGN of this luminosity out to high redshift (z=5).
158 - E. Treister , C. M. Urry 2009
We constrain the number density and evolution of Compton-thick Active Galactic Nuclei (AGN), and their contribution to the extragalactic X-ray background. In the local Universe we use the wide area surveys from the Swift and INTEGRAL satellites, whil e for high redshifts we explore candidate selections based on mid-IR parameters. We present the properties of a sample of 211 heavily-obscured AGN candidates in the Extended Chandra Deep Field-South (ECDF-S) selecting objects with f24/fR>1000 and R-K>4.5. The X-ray to mid-IR ratios for these sources are significantly larger than that of star-forming galaxies and ~2 orders of magnitude smaller than for the general AGN population, suggesting column densities of NH>5x10^24 cm^-2. The space density of CT AGN at z~2 derived from these observations is ~10^-5 Mpc^{-3}, finding a strong evolution in the number of LX>10^44 erg/s sources from z=1.5 to 2.5.
We present Nustar 3-40 keV observations of the optically selected Type 2 quasar (QSO2) SDSS J1034+6001 or Mrk 34. The high-quality hard X-ray spectrum and archival XMM-Newton data can be fitted self-consistently with a reflection-dominated continuum and strong Fe Kalpha fluorescence line with equivalent-width >1 keV. Prior X-ray spectral fitting below 10 keV showed the source to be consistent with being obscured by Compton-thin column densities of gas along the line-of-sight, despite evidence for much higher columns from multiwavelength data. NuSTAR now enables a direct measurement of this column, and shows that Nh lies in the Compton-thick (CT) regime. The new data also show a high intrinsic 2-10 keV luminosity of L_{2-10}~10^{44} erg/s, in contrast to previous low-energy X-ray measurements for which L_{2-10}<~10^{43} erg/s (i.e. X-ray selection below 10 keV does not pick up this source as an intrinsically luminous obscured quasar). Both the obscuring column and the intrinsic power are about an order of magnitude (or more) larger than inferred from pre-NuSTAR X-ray spectral fitting. Mrk34 is thus a gold standard CT QSO2 and is the nearest non-merging system in this class, in contrast to the other local CT quasar NGC6240 which is currently undergoing a major merger coupled with strong star-formation. For typical X-ray bolometric correction factors, the accretion luminosity of Mrk34 is high enough to potentially power the total infrared luminosity. X-ray spectral fitting also shows that thermal emission related to star-formation is unlikely to drive the observed bright soft component below ~3 keV, favoring photionization instead.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا