ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-IR observations of the HE0450-2958 system: discovery of a second AGN?

105   0   0.0 ( 0 )
 نشر من قبل Geraldine Letawe
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The QSO HE0450-2958 was brought to the front scene by the non-detection of its host galaxy and strong upper limits on the latters luminosity. The QSO is also a powerful infrared emitter, in gravitational interaction with a strongly distorted UltraLuminous InfraRed companion galaxy. We investigate the properties of the companion galaxy, through new near- and mid-infrared observations of the system obtained with NICMOS onboard HST, ISAAC and VISIR on the ESO VLT. The companion galaxy is found to harbour a point source revealed only in the infrared, in what appears as a hole or dark patch in the optical images. Various hypotheses on the nature of this point source are analyzed and it is found that the only plausible one is that it is a strongly reddened AGN hidden behind a thick dust cloud. The hypothesis that the QSO supermassive black hole might have been ejected from the companion galaxy in the course of a galactic collision involving 3-body black holes interaction is also reviewed, on the basis of this new insight on a definitely complex system.

قيم البحث

اقرأ أيضاً

79 - G. Letawe , P. Magain 2010
The QSO HE0450-2958 and the companion galaxy with which it is interacting, both ultra luminous in the infrared, have been the subject of much attention in recent years, as the quasar host galaxy remained undetected. This led to various interpretation s on QSO and galaxy formation and co-evolution, such as black hole ejection, jet induced star formation, dust obscured galaxy, or normal host below the detection limit. We carried out deep observations in the near-IR in order to solve the puzzle concerning the existence of any host. The object was observed with the ESO VLT and HAWK-I in the near-IR J-band for 8 hours. The images have been processed with the MCS deconvolution method (Magain, Courbin & Sohy, 1998), permitting accurate subtraction of the QSO light from the observations. The compact emission region situated close to the QSO, called the blob, which previously showed only gas emission lines in the optical spectra, is now detected in our near-IR images. Its high brightness implies that stars likely contribute to the near-IR emission. The blob might thus be interpreted as an off-centre, bright and very compact host galaxy, involved in a violent collision with its companion.
65 - E. Treister 2018
We present optical and near-IR Integral Field Unit (IFU) and ALMA band 6 observations of the nearby dual Active Galactic Nuclei (AGN) Mrk 463. At a distance of 210 Mpc, and a nuclear separation of $sim$4 kpc, Mrk 463 is an excellent laboratory to stu dy the gas dynamics, star formation processes and supermassive black hole (SMBH) accretion in a late-stage gas-rich major galaxy merger. The IFU observations reveal a complex morphology, including tidal tails, star-forming clumps, and emission line regions. The optical data, which map the full extent of the merger, show evidence for a biconical outflow and material outflowing at $>$600 km s$^{-1}$, both associated with the Mrk 463E nucleus, together with large scale gradients likely related to the ongoing galaxy merger. We further find an emission line region $sim$11 kpc south of Mrk 463E that is consistent with being photoionized by an AGN. Compared to the current AGN luminosity, the energy budget of the cloud implies a luminosity drop in Mrk 463E by a factor 3-20 over the last 40,000 years. The ALMA observations of $^{12}$CO(2-1) and adjacent 1mm continuum reveal the presence of $sim$10$^{9}$M$_odot$ in molecular gas in the system. The molecular gas shows velocity gradients of $sim$800 km/s and $sim$400 km/s around the Mrk 463E and 463W nuclei, respectively. We conclude that in this system the infall of $sim$100s $M_odot$/yr of molecular gas is in rough balance with the removal of ionized gas by a biconical outflow being fueled by a relatively small, $<$0.01% of accretion onto each SMBH.
114 - G. Letawe , P. Magain , F. Courbin 2008
Interest in the quasar HE0450-2958 arose following the publication of the non-detection of its expected massive host, leading to various interpretations. This article investigates the gaseous and stellar contents of the system through additional VLT/ FORS slit spectra and integral field spectroscopy from VLT/VIMOS. We apply our MCS deconvolution algorithm on slit spectra for the separation of the QSO and diffuse components, and develop a new method to remove the point sources in Integral Field Spectra, allowing extraction of velocity maps, narrow-line images, spatially resolved spectra or ionization diagrams of the surroundings of HE0450-2958. The whole system is embedded in gas, mostly ionized by the QSO radiation field and shocks associated with radio jets. The observed gas and star dynamics are unrelated, revealing a strongly perturbed system. Despite longer spectroscopic observations, the host galaxy remains undetected.
Intermediate mass black holes (10$^3$-10$^5$ M$_odot$) in the center of dwarf galaxies are believed to be analogous to growing Active Galactic Nuclei (AGN) in the early Universe. Their characterization can provide insight about the early galaxies. We present optical and near-infrared integral field spectroscopy of the inner $sim$50 pc of the dwarf galaxy NGC4395, known to harbor an AGN. NGC 4395 is an ideal candidate to investigate the nature of dwarf AGN, as it is nearby ($dapprox4.4$ Mpc) enough to allow a close look at its nucleus. The optical data were obtained with the Gemini GMOS-IFU covering the 4500 A to 7300 A spectral range at a spatial resolution of 10 pc. The J and K-band spectra were obtained with the Gemini NIFS at spatial resolutions of $sim$5 pc. The gas kinematics show a compact, rotation disk component with a projected velocity amplitude of 25 km s$^{-1}$. We estimate a mass of $7.7times10^5$ M$_odot$ inside a radius of 10 pc. From the H$alpha$ broad line component, we estimate the AGN bolometric luminosity as $L_{ bol}=(9.9pm1.4)times10^{40}$ erg s$^{-1}$ and a mass $M_{ BH}=(2.5^{+1.0}_{-0.8})times10^5$ M$_odot$ for the central black hole. The mean surface mass densities for the ionized and molecular gas are in the ranges (1-2) M$_{odot} $pc$^{-2}$ and (1-4)$times10^{-3}$ M${_odot}$ pc$^{-2}$ and the average ratio between ionized and hot molecular gas masses is $sim$500. The emission-line flux distributions reveal an elongated structure at 24 pc west of the nucleus, which is blueshifted relative to the systemic velocity of the galaxy by $approx$30 km s$^{-1}$. We speculate that this structure is originated by the accretion of a gas-rich small satellite or by a low metallicity cosmic cloud.
217 - J.A. Calanog , Hai Fu , A. Cooray 2014
We present Keck-Adaptive Optics and Hubble Space Telescope high resolution near-infrared (IR) imaging for 500 um-bright candidate lensing systems identified by the Herschel Multi-tiered Extra-galactic Survey (HerMES) and Herschel Astrophysical Terahe rtz Survey (H-ATLAS). Out of 87 candidates with near-IR imaging, 15 (~17%) display clear near-IR lensing morphologies. We present near-IR lens models to reconstruct and recover basic rest-frame optical morphological properties of the background galaxies from 12 new systems. Sources with the largest near-IR magnification factors also tend to be the most compact, consistent with the size bias predicted from simulations and pre- vious lensing models for sub-millimeter galaxies. For four new sources that also have high-resolution sub-mm maps, we test for differential lensing between the stellar and dust components and find that the 880 um magnification factor (u_880) is ~1.5 times higher than the near-IR magnification factor (u_NIR), on average. We also find that the stellar emission is ~2 times more extended in size than dust. The rest-frame optical properties of our sample of Herschel-selected lensed SMGs are consistent with those of unlensed SMGs, which suggests that the two populations are similar.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا