ﻻ يوجد ملخص باللغة العربية
The D-term is a fundamental particle property which is defined through the matrix elements of the energy-momentum tensor and as such in principle on equal footing with mass and spin. Yet the experimental information on the D-term of any hadron is very scarce. The D-term of the nucleon can be inferred from studies of hard-exclusive reactions, and its measurement will give valuable insights on the dynamics, structure, and the internal forces inside the nucleon. We review the latest developments and the fascinating applications of the D-term and other energy-momentum tensor (EMT) form factors. We also suggest a definition of the mechanical mean square radius and make a prediction for its size.
The hadronic form factors of the energy-momentum tensor (EMT) have attracted considerable interest in recent literature. This concerns especially the D-term form factor D(t) with its appealing interpretation in terms of internal forces. With their fo
The energy-momentum tensor (EMT) form factors pave new ways for exploring hadron structure. Especially the D-term related to the EMT form factor D(t) has received a lot of attention due to its attractive physical interpretation in terms of mechanical
Three-nucleon forces (3NF) are investigated from two-flavor lattice QCD simulations. We utilize the Nambu-Bethe-Salpeter (NBS) wave function to determine two-nucleon forces (2NF) and 3NF in the same framework. As a first exploratory study, we extract
A status report is given for a joint project of the Budapest-Marseille-Wuppertal collaboration and the Regensburg group to study the quark mass-dependence of octet baryons in SU(3) Baryon XPT. This formulation is expected to extend to larger masses t
We investigate the two-dimensional transverse charge distributions of the transversely polarized nucleon. As the longitudinal momentum ($P_z$) of the nucleon increases, the electric dipole moment is induced, which causes the displacement of the trans