ترغب بنشر مسار تعليمي؟ اضغط هنا

Tans two-body contact across the superfluid transition of a planar Bose gas

96   0   0.0 ( 0 )
 نشر من قبل Jerome Beugnon
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Tans contact is a quantity that unifies many different properties of a low-temperature gas with short-range interactions, from its momentum distribution to its spatial two-body correlation function. Here, we use a Ramsey interferometric method to realize experimentally the thermodynamic definition of the two-body contact, i.e. the change of the internal energy in a small modification of the scattering length. Our measurements are performed on a uniform two-dimensional Bose gas of $^{87}$Rb atoms across the Berezinskii-Kosterlitz-Thouless superfluid transition. They connect well to the theoretical predictions in the limiting cases of a strongly degenerate fluid and of a normal gas. They also provide the variation of this key quantity in the critical region, where further theoretical efforts are needed to account for our findings.



قيم البحث

اقرأ أيضاً

We compute the Tans contact of a weakly interacting Bose gas at zero temperature in a cigar-shaped configuration. Using an effective one-dimensional Gross-Pitaeskii equation and Bogoliubov theory, we derive an analytical formula that interpolates bet ween the three-dimensional and the one-dimensional mean-field regimes. In the strictly one-dimensional limit, we compare our results with Lieb-Liniger theory. Our study can be a guide for actual experiments interested in the study of Tans contact in the dimensional crossover.
Two-dimensional (2D) systems play a special role in many-body physics. Because of thermal fluctuations, they cannot undergo a conventional phase transition associated to the breaking of a continuous symmetry. Nevertheless they may exhibit a phase tra nsition to a state with quasi-long range order via the Berezinskii-Kosterlitz-Thouless (BKT) mechanism. A paradigm example is the 2D Bose fluid, such as a liquid helium film, which cannot Bose-condense at non-zero temperature although it becomes superfluid above a critical phase space density. Ultracold atomic gases constitute versatile systems in which the 2D quasi-long range coherence and the microscopic nature of the BKT transition were recently explored. However, a direct observation of superfluidity in terms of frictionless flow is still missing for these systems. Here we probe the superfluidity of a 2D trapped Bose gas with a moving obstacle formed by a micron-sized laser beam. We find a dramatic variation of the response of the fluid, depending on its degree of degeneracy at the obstacle location. In particular we do not observe any significant heating in the central, highly degenerate region if the velocity of the obstacle is below a critical value.
We experimentally study the effect of disorder on trapped quasi two-dimensional (2D) 87Rb clouds in the vicinity of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition. The disorder correlation length is of the order of the Bose gas characteri stic length scales (thermal de Broglie wavelength, healing length) and disorder thus modifies the physics at a microscopic level. We analyze the coherence properties of the cloud through measurements of the momentum distributions, for two disorder strengths, as a function of its degeneracy. For moderate disorder, the emergence of coherence remains steep but is shifted to a lower entropy. In contrast, for strong disorder, the growth of coherence is hindered. Our study is an experimental realization of the dirty boson problem in a well controlled atomic system suitable for quantitative analysis.
The physics in two-dimensional (2D) systems is very different from what we observe in three-dimensional (3D) systems. Thermal fluctuations in 2D systems are enhanced, and they prevent the conventional Bose-Einstein condensation (BEC) at non-zero temp eratures by destroying the long-range order. However, a phase transition to a superfluid phase is still expected to occur in a 2D system along with an emergence of a quasi-long-range order, explained by the Berezinskii-Kosterlitz-Thouless (BKT) mechanism. Within the BKT mechanism, a universal jump of the superfluid density in a 2D Bosonic system was theoretically predicted by Nelson and Kosterlitz, and was first observed in 2D textsuperscript{4}He films by Bishop and Reppy. Recent experiments in trapped ultracold 2D Bose gas systems have shown signatures of the BKT transition, and its superfluidity. However, the universal jump in the superfluid density was not observed in these systems. Here we report the first observation of the universal jump in the superfluid density using an optically trapped ultracold 2D Bose gas. The measured superfluid phase space density at the BKT transition agrees well with the predicted value within our measurement uncertainty. Additionally, we measure the phase fluctuations in our density profiles to show that the BKT transition occurs first, followed by the BEC transition.
We demonstrate the arbitrary control of the density profile of a two-dimensional Bose gas by shaping the optical potential applied to the atoms. We use a digital micromirror device (DMD) directly imaged onto the atomic cloud through a high resolution imaging system. Our approach relies on averaging the response of many pixels of the DMD over the diffraction spot of the imaging system, which allows us to create an optical potential with arbitrary grey levels and with micron-scale resolution. The obtained density distribution is optimized with a feedback loop based on the measured absorption images of the cloud. Using the same device, we also engineer arbitrary spin distributions thanks to a two-photon Raman transfer between internal ground states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا