ﻻ يوجد ملخص باللغة العربية
Alice is transmitting a private message to Bob across a bosonic wiretap channel with the help of a public feedback channel to which all parties, including the fully-quantum equipped Eve, have completely noiseless access. We find that by altering the model such that Eves copy of the initial round of feedback is corrupted by an iota of noise, one step towards physical relevance, the capacity can be increased dramatically. It is known that the private capacity with respect to the original model for a pure-loss bosonic channel is at most $- log(1-eta)$ bits per mode, where $eta$ is the transmissivity, in the limit of infinite input photon number. This is a very pessimistic result as there is a finite rate limit even with an arbitrarily large number of input photons. We refer to this as a loss limited rate. However, in our altered model we find that we can achieve a rate of $(1/2) log(1 + 4 eta N_S)$ bits per mode, where $N_S$ is the input photon number. This rate diverges with $N_S$, in sharp contrast to the result for the original model. This suggests that physical considerations behind the eavesdropping model should be taken more seriously, as they can create strong dependencies of the achievable rates on the model. For by a seemingly inconsequential weakening of Eve, we obtain a loss-unlimited rate. Our protocol also works verbatim for arbitrary i.i.d. noise (not even necessarily Gaussian) injected by Eve in every round, and even if Eve is given access to copies of the initial transmission and noise. The error probability of the protocol decays super-exponentially with the blocklength.
We consider the problem of transmitting classical and quantum information reliably over an entanglement-assisted quantum channel. Our main result is a capacity theorem that gives a three-dimensional achievable rate region. Points in the region are ra
A series of recent works has shown that placing communication channels in a coherent superposition of alternative configurations can boost their ability to transmit information. Instances of this phenomenon are the advantages arising from the use of
We formulate entropic measurements uncertainty relations (MURs) for a spin-1/2 system. When incompatible observables are approximatively jointly measured, we use relative entropy to quantify the information lost in approximation and we prove positive
Given one or more uses of a classical channel, only a certain number of messages can be transmitted with zero probability of error. The study of this number and its asymptotic behaviour constitutes the field of classical zero-error information theory
A $((k,n))$ quantum threshold secret sharing (QTS) scheme is a quantum cryptographic protocol for sharing a quantum secret among $n$ parties such that the secret can be recovered by any $k$ or more parties while $k-1$ or fewer parties have no informa