ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of Communication Efficient Quantum Secret Sharing

336   0   0.0 ( 0 )
 نشر من قبل Kaushik Senthoor
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

A $((k,n))$ quantum threshold secret sharing (QTS) scheme is a quantum cryptographic protocol for sharing a quantum secret among $n$ parties such that the secret can be recovered by any $k$ or more parties while $k-1$ or fewer parties have no information about the secret. Despite extensive research on these schemes, there has been very little study on optimizing the quantum communication cost during recovery. Recently, we initiated the study of communication efficient quantum threshold secret sharing (CE-QTS) schemes. These schemes reduce the communication complexity in QTS schemes by accessing $dgeq k$ parties for recovery; here $d$ is fixed ahead of encoding the secret. In contrast to the standard QTS schemes which require $k$ qudits for recovering each qudit in the secret, these schemes have a lower communication cost of $frac{d}{d-k+1}$ for $d>k$. In this paper, we further develop the theory of communication efficient quantum threshold schemes. Here, we propose universal CE-QTS schemes which reduce the communication cost for all $dgeq k$ simultaneously. We provide a framework based on ramp quantum secret sharing to construct CE-QTS and universal CE-QTS schemes. We give another construction for universal CE-QTS schemes based on Staircase codes. We derived a lower bound on communication complexity and show that our constructions are optimal. Finally, an information theoretic model is developed to analyse CE-QTS schemes and the lower bound on communication complexity is proved again using this model.



قيم البحث

اقرأ أيضاً

72 - Mohsen Moradi 2017
A secret can be an encrypted message or a private key to decrypt the ciphertext. One of the main issues in cryptography is keeping this secret safe. Entrusting secret to one person or saving it in a computer can conclude betrayal of the person or des truction of that device. For solving this issue, secret sharing can be used between some individuals which a coalition of a specific number of them can only get access to the secret. In practical issues, some of the members have more power and by a coalition of fewer of them, they should know about the secret. In a bank, for example, president and deputy can have a union with two members by each other. In this paper, by using Polar codes secret sharing has been studied and a secret sharing scheme based on Polar codes has been introduced. Information needed for any member would be sent by the channel which Polar codes are constructed by it.
In this paper we define a kind of decomposition for a quantum access structure. We propose a conception of minimal maximal quantum access structure and obtain a sufficient and necessary condition for minimal maximal quantum access structure, which sh ows the relationship between the number of minimal authorized sets and that of the players. Moreover, we investigate the construction of efficient quantum secret schemes by using these techniques, a decomposition and minimal maximal quantum access structure. A major advantage of these techniques is that it allows us to construct a method to realize a general quantum access structure. For these quantum access structures, we present two quantum secret schemes via the idea of concatenation or a decomposition of a quantum access structure. As a consequence, the application of these techniques allow us to save more quantum shares and reduce more cost than the existing scheme.
We develop a connection between tripartite information $I_3$, secret sharing protocols and multi-unitaries. This leads to explicit ((2,3)) threshold schemes in arbitrary dimension minimizing tripartite information $I_3$. As an application we show tha t Page scrambling unitaries simultaneously work for all secrets shared by Alice. Using the $I_3$-Ansatz for imperfect sharing schemes we discover examples of VIP sharing schemes.
In this work, we investigate what kinds of quantum states are feasible to perform perfectly secure secret sharing, and present its necessary and sufficient conditions. We also show that the states are bipartite distillable for all bipartite splits, a nd hence the states could be distillable into the Greenberger-Horne-Zeilinger state. We finally exhibit a class of secret-sharing states, which have an arbitrarily small amount of bipartite distillable entanglement for a certain split.
In single-qubit quantum secret sharing, a secret is shared between N parties via manipulation and measurement of one qubit at a time. Each qubit is sent to all N parties in sequence; the secret is encoded in the first participants preparation of the qubit state and the subsequent participants choices of state rotation or measurement basis. We present a protocol for single-qubit quantum secret sharing using polarization entanglement of photon pairs produced in type-I spontaneous parametric downconversion. We investigate the protocols security against eavesdropping attack under common experimental conditions: a lossy channel for photon transmission, and imperfect preparation of the initial qubit state. A protocol which exploits entanglement between photons, rather than simply polarization correlation, is more robustly secure. We implement the entanglement-based secret-sharing protocol with 87% secret-sharing fidelity, limited by the purity of the entangled state produced by our present apparatus. We demonstrate a photon-number splitting eavesdropping attack, which achieves no success against the entanglement-based protocol while showing the predicted rate of success against a correlation-based protocol.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا