ﻻ يوجد ملخص باللغة العربية
A series of recent works has shown that placing communication channels in a coherent superposition of alternative configurations can boost their ability to transmit information. Instances of this phenomenon are the advantages arising from the use of communication devices in a superposition of alternative causal orders, and those arising from the transmission of information along a superposition of alternative trajectories. The relation among these advantages has been the subject of recent debate, with some authors claiming that the advantages of the superposition of orders could be reproduced, and even surpassed, by other forms of superpositions. To shed light on this debate, we develop a general framework of resource theories of communication. In this framework, the resources are communication devices, and the allowed operations are (a) the placement of communication devices between the communicating parties, and (b) the connection of communication devices with local devices in the parties laboratories. The allowed operations are required to satisfy the minimal condition that they do not enable communication independently of the devices representing the initial resources. The resource-theoretic analysis reveals that the aforementioned criticisms on the superposition of causal orders were based on an uneven comparison between different types of quantum superpositions, exhibiting different operational features.
Full quantum capability devices can provide secure communications, but they are challenging to make portable given the current technology. Besides, classical portable devices are unable to construct communication channels resistant to quantum compute
A $((k,n))$ quantum threshold secret sharing (QTS) scheme is a quantum cryptographic protocol for sharing a quantum secret among $n$ parties such that the secret can be recovered by any $k$ or more parties while $k-1$ or fewer parties have no informa
We consider the problem of transmitting classical and quantum information reliably over an entanglement-assisted quantum channel. Our main result is a capacity theorem that gives a three-dimensional achievable rate region. Points in the region are ra
It has been conjectured that counterfactual communication is impossible, even for post-selected quantum particles. We strongly challenge this by proposing exactly such a counterfactual scheme where---unambiguously---none of Alices photons that contri
Quantum resource theories (QRTs) offer a highly versatile and powerful framework for studying different phenomena in quantum physics. From quantum entanglement to quantum computation, resource theories can be used to quantify a desirable quantum effe