ترغب بنشر مسار تعليمي؟ اضغط هنا

Current voltage characteristics and excess noise at the trap filling transition in polyacenes

109   0   0.0 ( 0 )
 نشر من قبل Eleonora Alfinito Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Experiments in organic semiconductors (polyacenes) evidence a strong super quadratic increase of the current-voltage (I-V) characteristic at voltages in the transition region between linear (Ohmic) and quadratic (trap free space-charge-limited-current) behaviours. Similarly, excess noise measurements at a given frequency and increasing voltages evidence a sharp peak of the relative spectral density of the current noise in concomitance with the strong super-quadratic I-V characteristics. Here we discuss the physical interpretation of these experiments in terms of an essential contribution from field assisted trapping-detrapping processes of injected carriers. To this purpose, the fraction of filled traps determined by the I-V characteristics is used to evaluate the excess noise in the trap filled transition (TFT) regime. We have found an excellent agreement between the predictions of our model and existing experimental results in tetracene and pentacene thin films of different length in the range $0.65 div 35 mu m$.



قيم البحث

اقرأ أيضاً

365 - H. Kohlstedt 2005
We present the concept of ferroelectric tunnel junctions (FTJs). These junctions consist of two metal electrodes separated by a nanometer-thick ferroelectric barrier. The current-voltage characteristics of FTJs are analyzed under the assumption that the direct electron tunneling represents the dominant conduction mechanism. First, the influence of converse piezoelectric effect inherent in ferroelectric materials on the tunnel current is described. The calculations show that the lattice strains of piezoelectric origin modify the current-voltage relationship owing to strain-induced changes of the barrier thickness, electron effective mass, and position of the conduction-band edge. Remarkably, the conductance minimum becomes shifted from zero voltage due to the piezoelectric effect, and a strain-related resistive switching takes place after the polarization reversal in a ferroelectric barrier. Second, we analyze the influence of the internal electric field arising due to imperfect screening of polarization charges by electrons in metal electrodes. It is shown that, for asymmetric FTJs, this depolarizing-field effect also leads to a considerable change of the barrier resistance after the polarization reversal. However, the symmetry of the resulting current-voltage loop is different from that characteristic of the strain-related resistive switching. The crossover from one to another type of the hysteretic curve, which accompanies the increase of FTJ asymmetry, is described taking into account both the strain and depolarizing-field effects. It is noted that asymmetric FTJs with dissimilar top and bottom electrodes are preferable for the non-volatile memory applications because of a larger resistance on/off ratio.
64 - C. Acha 2016
A graphical representation based on the isothermal current-voltage (IV) measurements of typical memristive interfaces is presented. This is the starting point to extract relevant microscopic information of the parameters that control the electrical p roperties of a device based on a particular metal-oxide interface. The convenience of the method is illustrated presenting some examples were the IV characteristics were simulated in order to gain insight on the influence of the fitting parameters.
Transitions to immeasurably small electrical resistance in thin films of Ag/Au nanostructure-based films have generated significant interest because such transitions can occur even at ambient temperature and pressure. While the zero-bias resistance a nd magnetic transition in these films have been reported recently, the non-equilibrium current-voltage ($I-V$) transport characteristics at the transition remains unexplored. Here we report the $I-V$ characteristics at zero magnetic field of a prototypical Ag/Au nanocluster film close to its resistivity transition at the critical temperature $T_{C}$ of $approx160$ K. The $I-V$ characteristics become strongly hysteretic close to the transition and exhibit a temperature-dependent critical current scale beyond which the resistance increases rapidly. Intriguingly, the non-equilibrium transport regime consists of a series of nearly equispaced resistance steps when the drive current exceeds the critical current. We have discussed the similarity of these observations with resistive transitions in ultra-thin superconducting wires via phase slip centres.
The measurements of the high - temperature current - voltage characteristics of MoS2 thin - film transistors show that the devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the DC and pulse measurements shows that the DC sub - linear and super - linear output characteristics of MoS2 thin - films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, an intriguing phenomenon of the memory step - a kink in the drain current - occurs at zero gate voltage irrespective of the threshold voltage value. The memory step effect was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The obtained results suggest new applications for MoS2 thin - film transistors in extreme - temperature electronics and sensors.
We argue that giant jumps of current at finite voltages observed in disordered samples of InO, TiN and YSi manifest a bistability caused by the overheating of electrons. One of the stable states is overheated and thus low-resistive, while the other, high-resistive state is heated much less by the same voltage. The bistability occurs provided that cooling of electrons is inefficient and the temperature dependence of the equilibrium resistance, R(T), is steep enough. We use experimental R(T) and assume phonon mechanism of the cooling taking into account its strong suppression by disorder. Our description of details of the I-V characteristics does not involve adjustable parameters and turns out to be in a quantitative agreement with the experiments. We propose experiments for more direct checks of this physical picture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا