ترغب بنشر مسار تعليمي؟ اضغط هنا

Jumps in current-voltage characteristics in disordered films

210   0   0.0 ( 0 )
 نشر من قبل Igor Aleiner
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We argue that giant jumps of current at finite voltages observed in disordered samples of InO, TiN and YSi manifest a bistability caused by the overheating of electrons. One of the stable states is overheated and thus low-resistive, while the other, high-resistive state is heated much less by the same voltage. The bistability occurs provided that cooling of electrons is inefficient and the temperature dependence of the equilibrium resistance, R(T), is steep enough. We use experimental R(T) and assume phonon mechanism of the cooling taking into account its strong suppression by disorder. Our description of details of the I-V characteristics does not involve adjustable parameters and turns out to be in a quantitative agreement with the experiments. We propose experiments for more direct checks of this physical picture.

قيم البحث

اقرأ أيضاً

We present experimental data and a theoretical interpretation on the conductance near the metal-insulator transition in thin ferromagnetic Gd films of thickness b approximately 2-10 nm. A large phase relaxation rate caused by scattering of quasiparti cles off spin wave excitations renders the dephasing length L_phi < b in the range of sheet resistances considered, so that the effective dimension is d = 3. The observed approximate fractional temperature power law of the conductivity is ascribed to the scaling regime near the transition. The conductivity data as a function of temperature and disorder strength collapse on to two scaling curves for the metallic and insulating regimes. The best fit is obtained for a dynamical exponent z approximately 2.5 and a correlation length critical exponent u approximately 1.4 on the metallic side and a localization length exponent u approximately 0.8 on the insulating side.
Disordered thin films close to the superconducting-insulating phase transition (SIT) hold the key to understanding quantum phase transition in strongly correlated materials. The SIT is governed by superconducting quantum fluctuations, which can be re vealed for example by tunneling measurements. These experiments detect a spectral gap, accompanied by suppressed coherence peaks that do not fit the BCS prediction. To explain these observations, we consider the effect of finite-range superconducting fluctuations on the density of states, focusing on the insulating side of the SIT. We perform a controlled diagrammatic resummation and derive analytic expressions for the tunneling differential conductance. We find that short-range superconducting fluctuations suppress the coherence peaks, even in the presence of long-range correlations. Our approach offers a quantitative description of existing measurements on disordered thin films and accounts for tunneling spectra with suppressed coherence peaks observed, for example, in the pseudo gap regime of high-temperature superconductors.
A theoretical study of the current-driven dynamics of magnetic skyrmions in disordered perpendicularly-magnetized ultrathin films is presented. The disorder is simulated as a granular structure in which the local anisotropy varies randomly from grain to grain. The skyrmion velocity is computed for different disorder parameters and ensembles. Similar behavior is seen for spin-torques due to in-plane currents and the spin Hall effect, where a pinning regime can be identified at low currents with a transition towards the disorder-free case at higher currents, similar to domain wall motion in disordered films. Moreover, a current-dependent skyrmion Hall effect and fluctuations in the core radius are found, which result from the interaction with the pinning potential.
Transitions to immeasurably small electrical resistance in thin films of Ag/Au nanostructure-based films have generated significant interest because such transitions can occur even at ambient temperature and pressure. While the zero-bias resistance a nd magnetic transition in these films have been reported recently, the non-equilibrium current-voltage ($I-V$) transport characteristics at the transition remains unexplored. Here we report the $I-V$ characteristics at zero magnetic field of a prototypical Ag/Au nanocluster film close to its resistivity transition at the critical temperature $T_{C}$ of $approx160$ K. The $I-V$ characteristics become strongly hysteretic close to the transition and exhibit a temperature-dependent critical current scale beyond which the resistance increases rapidly. Intriguingly, the non-equilibrium transport regime consists of a series of nearly equispaced resistance steps when the drive current exceeds the critical current. We have discussed the similarity of these observations with resistive transitions in ultra-thin superconducting wires via phase slip centres.
64 - C. Acha 2016
A graphical representation based on the isothermal current-voltage (IV) measurements of typical memristive interfaces is presented. This is the starting point to extract relevant microscopic information of the parameters that control the electrical p roperties of a device based on a particular metal-oxide interface. The convenience of the method is illustrated presenting some examples were the IV characteristics were simulated in order to gain insight on the influence of the fitting parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا