ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical current-voltage characteristics of ferroelectric tunnel junctions

366   0   0.0 ( 0 )
 نشر من قبل Nicholas A. Pertsev
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف H. Kohlstedt




اسأل ChatGPT حول البحث

We present the concept of ferroelectric tunnel junctions (FTJs). These junctions consist of two metal electrodes separated by a nanometer-thick ferroelectric barrier. The current-voltage characteristics of FTJs are analyzed under the assumption that the direct electron tunneling represents the dominant conduction mechanism. First, the influence of converse piezoelectric effect inherent in ferroelectric materials on the tunnel current is described. The calculations show that the lattice strains of piezoelectric origin modify the current-voltage relationship owing to strain-induced changes of the barrier thickness, electron effective mass, and position of the conduction-band edge. Remarkably, the conductance minimum becomes shifted from zero voltage due to the piezoelectric effect, and a strain-related resistive switching takes place after the polarization reversal in a ferroelectric barrier. Second, we analyze the influence of the internal electric field arising due to imperfect screening of polarization charges by electrons in metal electrodes. It is shown that, for asymmetric FTJs, this depolarizing-field effect also leads to a considerable change of the barrier resistance after the polarization reversal. However, the symmetry of the resulting current-voltage loop is different from that characteristic of the strain-related resistive switching. The crossover from one to another type of the hysteretic curve, which accompanies the increase of FTJ asymmetry, is described taking into account both the strain and depolarizing-field effects. It is noted that asymmetric FTJs with dissimilar top and bottom electrodes are preferable for the non-volatile memory applications because of a larger resistance on/off ratio.

قيم البحث

اقرأ أيضاً

We present a quantitative study of the current-voltage characteristics (CVC) of diffusive superconductor/ insulator/ ferromagnet/ superconductor (SIFS) tunnel Josephson junctions. In order to obtain the CVC we calculate the density of states (DOS) in the F/S bilayer for arbitrary length of the ferromagnetic layer, using quasiclassical theory. For a ferromagnetic layer thickness larger than the characteristic penetration depth of the superconducting condensate into the F layer, we find an analytical expression which agrees with the DOS obtained from a self-consistent numerical method. We discuss general properties of the DOS and its dependence on the parameters of the ferromagnetic layer. In particular we focus our analysis on the DOS oscillations at the Fermi energy. Using the numerically obtained DOS we calculate the corresponding CVC and discuss their properties. Finally, we use CVC to calculate the macroscopic quantum tunneling (MQT) escape rate for the current biased SIFS junctions by taking into account the dissipative correction due to the quasiparticle tunneling. We show that the influence of the quasiparticle dissipation on the macroscopic quantum dynamics of SIFS junctions is small, which is an advantage of SIFS junctions for superconducting qubits applications.
We propose energy band engineering to enhance tunneling electroresistance (TER) in ferroelectric tunnel junctions (FTJs). We predict that an ultrathin dielectric layer with a smaller band gap, embedded into a ferroelectric barrier layer, acts as a sw itch controlling high and low conductance states of an FTJ depending on polarization orientation. Using first-principles modeling based on density functional theory, we investigate this phenomenon for a prototypical SrRuO3/BaTiO3/SrRuO3 FTJ with a BaSnO3 monolayer embedded in the BaTiO3 barrier. We show that in such a composite-barrier FTJ, ferroelectric polarization of BaTiO3 shifts the conduction band minimum of the BaSnO3 monolayer above or below the Fermi energy depending on polarization orientation. The resulting switching between direct and resonant tunneling leads to a TER effect with a giant ON/OFF conductance ratio. The proposed resonant band engineering of FTJs can serve as a viable tool to enhance their performance useful for device application.
In this paper, a theoretical approach, comprising the non-equilibrium Greens function method for electronic transport and Landau-Khalatnikov equation for electric polarization dynamics, is presented to describe polarization-dependent tunneling electr oresistance (TER) in ferroelectric tunnel junctions. Using appropriate contact, interface, and ferroelectric parameters, measured current-voltage characteristic curves in both inorganic (Co/BaTiO$_{3}$/La$_{0.67}$Sr$_{0.33}$MnO$_{3}$) and organic (Au/PVDF/W) ferroelectric tunnel junctions can be well described by the proposed approach. Furthermore, under this theoretical framework, the controversy of opposite TER signs observed experimentally by different groups in Co/BaTiO$_{3}$/La$_{0.67}$Sr$_{0.33}$MnO$_{3}$ systems is addressed by considering the interface termination effects using the effective contact ratio, defined through the effective screening length and dielectric response at the metal/ferroelectric interfaces. Finally, our approach is extended to investigate the role of a CoO$_{x}$ buffer layer at the Co/BaTiO$_{3}$ interface in a ferroelectric tunnel memristor. It is shown that, to have a significant memristor behavior, not only the interface oxygen vacancies but also the CoO$_{x}$ layer thickness may vary with the applied bias.
101 - S. T. Chui , Z. F. Lin 2007
We studied the response of a ferromagnet-insulator-normal metal tunnel structure under an external oscillating radio frequency (R.F.) magnetic field. The D. C. voltage across the junction is calculated and is found not to decrease despite the high re sistance of the junction; instead, it is of the order of $mu V$ to $100mu V$, much larger than the experimentally observed value (100 nano-V) in the strong coupled ohmic ferromagnet-normal metal bilayers. This is consistent with recent experimental results in tunnel structures, where the voltage is larger than $mu V$s. The damping and loss of an external RF field in this structure is calculated.
64 - C. Acha 2016
A graphical representation based on the isothermal current-voltage (IV) measurements of typical memristive interfaces is presented. This is the starting point to extract relevant microscopic information of the parameters that control the electrical p roperties of a device based on a particular metal-oxide interface. The convenience of the method is illustrated presenting some examples were the IV characteristics were simulated in order to gain insight on the influence of the fitting parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا