ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotic mean value properties for fractional anisotropic operators

61   0   0.0 ( 0 )
 نشر من قبل Marco Squassina
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtain an asymptotic representation formula for harmonic functions with respect to a linear anisotropic nonlocal operator. Furthermore we get a Bourgain-Brezis-Mironescu type limit formula for a related class of anisotropic nonlocal norms.



قيم البحث

اقرأ أيضاً

In this paper we characterize viscosity solutions to nonlinear parabolic equations (including parabolic Monge-Amp`ere equations) by asymptotic mean value formulas. Our asymptotic mean value formulas can be interpreted from a probabilistic point of vi ew in terms of Dynamic Programming Principles for certain two-player, zero-sum games.
We obtain asymptotic mean value formulas for solutions of second-order elliptic equations. Our approach is very flexible and allows us to consider several families of operators obtained as an infimum, a supremum, or a combination of both infimum and supremum, of linear operators. We study both when the set of coefficients is bounded and unbounded (each case requires different techniques). The families of equations that we consider include well-known operators such as Pucci, Issacs, and $k-$Hessian operators.
Mean value formulas are of great importance in the theory of partial differential equations: many very useful results are drawn, for instance, from the well known equivalence between harmonic functions and mean value properties. In the nonlocal setti ng of fractional harmonic functions, such an equivalence still holds, and many applications are now-days available. The nonlinear case, corresponding to the $p$-Laplace operator, has also been recently investigated, whereas the validity of a nonlocal, nonlinear, counterpart remains an open problem. In this paper, we propose a formula for the emph{nonlocal, nonlinear mean value kernel}, by means of which we obtain an asymptotic representation formula for harmonic functions in the viscosity sense, with respect to the fractional (variational) $p$-Laplacian (for $pgeq 2$) and to other gradient dependent nonlocal operators.
In this paper, we derive Carleman estimates for the fractional relativistic operator. Firstly, we consider changing-sign solutions to the heat equation for such operators. We prove monotonicity inequalities and convexity of certain energy functionals to deduce Carleman estimates with linear exponential weight. Our approach is based on spectral methods and functional calculus. Secondly, we use pseudo-differential calculus in order to prove Carleman estimates with quadratic exponential weight, both in parabolic and elliptic contexts. The latter also holds in the case of the fractional Laplacian.
We propose two asymptotic expansions of the two interrelated integral-type averages, in the context of the fractional $infty$-Laplacian $Delta_infty^s$ for $sin (frac{1}{2},1)$. This operator has been introduced and first studied in [Bjorland-Caffare lli-Figalli, 2012]. Our expansions are parametrised by the radius of the removed singularity $epsilon$, and allow for the identification of $Delta_infty^sphi(x)$ as the $epsilon^{2s}$-order coefficient of the deviation of the $epsilon$-average from the value $phi(x)$, in the limit $epsilonto 0+$. The averages are well posed for functions $phi$ that are only Borel regular and bounded.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا