ﻻ يوجد ملخص باللغة العربية
Mean value formulas are of great importance in the theory of partial differential equations: many very useful results are drawn, for instance, from the well known equivalence between harmonic functions and mean value properties. In the nonlocal setting of fractional harmonic functions, such an equivalence still holds, and many applications are now-days available. The nonlinear case, corresponding to the $p$-Laplace operator, has also been recently investigated, whereas the validity of a nonlocal, nonlinear, counterpart remains an open problem. In this paper, we propose a formula for the emph{nonlocal, nonlinear mean value kernel}, by means of which we obtain an asymptotic representation formula for harmonic functions in the viscosity sense, with respect to the fractional (variational) $p$-Laplacian (for $pgeq 2$) and to other gradient dependent nonlocal operators.
We propose two asymptotic expansions of the two interrelated integral-type averages, in the context of the fractional $infty$-Laplacian $Delta_infty^s$ for $sin (frac{1}{2},1)$. This operator has been introduced and first studied in [Bjorland-Caffare
We consider a Dirichlet type problem for a nonlinear, nonlocal equation driven by the degenerate fractional p-Laplacian, with a logistic type reaction depending on a positive parameter. In the subdiffusive and equidiffusive cases, we prove existence
We consider a pseudo-differential equation driven by the fractional $p$-Laplacian with $pge 2$ (degenerate case), with a bounded reaction $f$ and Dirichlet type conditions in a smooth domain $Omega$. By means of barriers, a nonlocal superposition pri
We obtain an asymptotic representation formula for harmonic functions with respect to a linear anisotropic nonlocal operator. Furthermore we get a Bourgain-Brezis-Mironescu type limit formula for a related class of anisotropic nonlocal norms.
We consider a nonlinear pseudo-differential equation driven by the fractional $p$-Laplacian $(-Delta)^s_p$ with $sin(0,1)$ and $pge 2$ (degenerate case), under Dirichlet type conditions in a smooth domain $Omega$. We prove that local minimizers of th